First working version of IQM animations

Still a work in progress but it already works...
Current riqm API could be simplified...
This commit is contained in:
Ray
2018-07-24 18:28:58 +02:00
parent a5311eddf0
commit 198a023527
8 changed files with 81 additions and 6456 deletions

View File

@ -73,36 +73,10 @@ typedef struct Animation {
Pose **framepose;
} Animation;
typedef struct AnimatedMesh {
//Mesh mesh;
// Mesh struct defines:
//-------------------------
int vertexCount;
int triangleCount;
float *vertices;
float *normals;
float *texcoords;
unsigned short *triangles; //equivalent to mes.indices
unsigned int vaoId;
unsigned int vboId[7];
//-------------------------
char name[MESH_NAME_LENGTH];
float *animVertices;
float *animNormals;
float *weightBias;
int *weightId;
} AnimatedMesh;
// Animated Model type
typedef struct AnimatedModel {
int meshCount;
AnimatedMesh *mesh;
Mesh *mesh;
int materialCount;
int *meshMaterialId;
@ -125,15 +99,14 @@ RIQMDEF void UnloadAnimatedModel(AnimatedModel model);
RIQMDEF Animation LoadAnimation(const char *filename);
RIQMDEF void UnloadAnimation(Animation anim);
RIQMDEF AnimatedModel AnimatedModelAddTexture(AnimatedModel model,const char *filename); // GENERIC!
RIQMDEF AnimatedModel SetMeshMaterial(AnimatedModel model,int meshid, int textureid); // GENERIC!
RIQMDEF AnimatedModel AnimatedModelAddTexture(AnimatedModel model, const char *filename); // GENERIC!
RIQMDEF AnimatedModel SetMeshMaterial(AnimatedModel model, int meshid, int textureid); // GENERIC!
// Usage functionality
RIQMDEF bool CheckSkeletonsMatch(AnimatedModel model, Animation anim);
RIQMDEF void AnimateModel(AnimatedModel model, Animation anim, int frame);
RIQMDEF void DrawAnimatedModel(AnimatedModel model,Vector3 position,float scale,Color tint);
RIQMDEF void DrawAnimatedModelEx(AnimatedModel model,Vector3 position,Vector3 rotationAxis,float rotationAngle, Vector3 scale,Color tint);
RIQMDEF void DrawAnimatedModel(AnimatedModel model, Vector3 position, float scale, Color tint);
RIQMDEF void DrawAnimatedModelEx(AnimatedModel model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint);
#endif // RIQM_H
@ -153,10 +126,6 @@ RIQMDEF void DrawAnimatedModelEx(AnimatedModel model,Vector3 position,Vector3 ro
#include <string.h> // Required for: strncmp(),strcpy()
#include "raymath.h" // Required for: Vector3, Quaternion functions
#include "rlgl.h" // raylib OpenGL abstraction layer to OpenGL 1.1, 2.1, 3.3+ or ES2
#include "glad.h" // Required for OpenGL functions > TO BE REMOVED!
//----------------------------------------------------------------------------------
// Defines and Macros
@ -253,412 +222,8 @@ typedef enum {
//----------------------------------------------------------------------------------
// Module specific Functions Declaration
//----------------------------------------------------------------------------------
void rlLoadAnimatedMesh(AnimatedMesh *amesh, bool dynamic);
void rlUnloadAnimatedMesh(AnimatedMesh *amesh);
void rlUpdateAnimatedMesh(AnimatedMesh *amesh);
void rlDrawAnimatedMesh(AnimatedMesh amesh, Material material, Matrix transform);
static AnimatedModel LoadIQM(const char *filename);
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
void rlLoadAnimatedMesh(AnimatedMesh *amesh, bool dynamic)
{
amesh->vaoId = 0; // Vertex Array Object
amesh->vboId[0] = 0; // Vertex positions VBO << these are the animated vertices in animVertices
amesh->vboId[1] = 0; // Vertex texcoords VBO
amesh->vboId[2] = 0; // Vertex normals VBO << these are the animated normals in animNormals
amesh->vboId[3] = 0; // Vertex colors VBO
amesh->vboId[4] = 0; // Vertex tangents VBO UNUSED
amesh->vboId[5] = 0; // Vertex texcoords2 VBO UNUSED
amesh->vboId[6] = 0; // Vertex indices VBO
#if defined(GRAPHICS_API_OPENGL_11)
TraceLog(LOG_WARNING, "OGL 11");
#endif
#if defined(GRAPHICS_API_OPENGL_21)
TraceLog(LOG_WARNING, "OGL 21");
#endif
#if defined(GRAPHICS_API_OPENGL_33)
TraceLog(LOG_WARNING, "OGL 33");
#endif
#if defined(GRAPHICS_API_OPENGL_ES2)
TraceLog(LOG_WARNING, "OGL ES2");
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
int drawHint = GL_STATIC_DRAW;
if (dynamic) drawHint = GL_DYNAMIC_DRAW;
//if (vaoSupported)
{
// Initialize Quads VAO (Buffer A)
glGenVertexArrays(1, &amesh->vaoId);
glBindVertexArray(amesh->vaoId);
}
// NOTE: Attributes must be uploaded considering default locations points
// Enable vertex attributes: position (shader-location = 0)
glGenBuffers(1, &amesh->vboId[0]);
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[0]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*amesh->vertexCount, amesh->animVertices, drawHint);
glVertexAttribPointer(0, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(0);
// Enable vertex attributes: texcoords (shader-location = 1)
glGenBuffers(1, &amesh->vboId[1]);
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[1]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*amesh->vertexCount, amesh->texcoords, drawHint);
glVertexAttribPointer(1, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(1);
// Enable vertex attributes: normals (shader-location = 2)
if (amesh->animNormals != NULL)
{
glGenBuffers(1, &amesh->vboId[2]);
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[2]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*3*amesh->vertexCount, amesh->animNormals, drawHint);
glVertexAttribPointer(2, 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(2);
}
else
{
// Default color vertex attribute set to WHITE
glVertexAttrib3f(2, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(2);
}
// colors UNUSED
/*
// Default color vertex attribute (shader-location = 3)
if (mesh->colors != NULL)
{
glGenBuffers(1, &amesh->vboId[3]);
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[3]);
glBufferData(GL_ARRAY_BUFFER, sizeof(unsigned char)*4*mesh->vertexCount, mesh->colors, drawHint);
glVertexAttribPointer(3, 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(3);
}
else
{
// Default color vertex attribute set to WHITE
glVertexAttrib4f(3, 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(3);
}
*/
// colors to default
glVertexAttrib4f(3, 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(3);
// tangents UNUSED
/*
// Default tangent vertex attribute (shader-location = 4)
if (mesh->tangents != NULL)
{
glGenBuffers(1, &mesh->vboId[4]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[4]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*4*mesh->vertexCount, mesh->tangents, drawHint);
glVertexAttribPointer(4, 4, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(4);
}
else
{
// Default tangents vertex attribute
glVertexAttrib4f(4, 0.0f, 0.0f, 0.0f, 0.0f);
glDisableVertexAttribArray(4);
}
*/
// tangents to default
glVertexAttrib4f(4, 0.0f, 0.0f, 0.0f, 0.0f);
glDisableVertexAttribArray(4);
// texcoords2 UNUSED
/*
// Default texcoord2 vertex attribute (shader-location = 5)
if (mesh->texcoords2 != NULL)
{
glGenBuffers(1, &mesh->vboId[5]);
glBindBuffer(GL_ARRAY_BUFFER, mesh->vboId[5]);
glBufferData(GL_ARRAY_BUFFER, sizeof(float)*2*mesh->vertexCount, mesh->texcoords2, drawHint);
glVertexAttribPointer(5, 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(5);
}
else
{
// Default texcoord2 vertex attribute
glVertexAttrib2f(5, 0.0f, 0.0f);
glDisableVertexAttribArray(5);
}
*/
// texcoords2 to default
glVertexAttrib2f(5, 0.0f, 0.0f);
glDisableVertexAttribArray(5);
if (amesh->triangles != NULL)
{
glGenBuffers(1, &amesh->vboId[6]);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, amesh->vboId[6]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(unsigned short)*amesh->triangleCount*3, amesh->triangles, GL_STATIC_DRAW);
}
if (amesh->vaoId > 0) TraceLog(LOG_INFO, "[VAO ID %i] Mesh uploaded successfully to VRAM (GPU)", amesh->vaoId);
else TraceLog(LOG_WARNING, "Mesh could not be uploaded to VRAM (GPU)");
#endif
}
// Unload mesh data from CPU and GPU
void rlUnloadAnimatedMesh(AnimatedMesh *amesh)
{
if (amesh->vertices != NULL) free(amesh->vertices);
if (amesh->animVertices != NULL) free(amesh->animVertices);
if (amesh->texcoords != NULL) free(amesh->texcoords);
if (amesh->normals != NULL) free(amesh->normals);
if (amesh->animNormals != NULL) free(amesh->animNormals);
// if (mesh->colors != NULL) free(mesh->colors);
// if (mesh->tangents != NULL) free(mesh->tangents);
// if (mesh->texcoords2 != NULL) free(mesh->texcoords2);
if (amesh->triangles != NULL) free(amesh->triangles);
if (amesh->weightId != NULL) free(amesh->weightId);
if (amesh->weightBias != NULL) free(amesh->weightBias);
rlDeleteBuffers(amesh->vboId[0]); // vertex
rlDeleteBuffers(amesh->vboId[1]); // texcoords
rlDeleteBuffers(amesh->vboId[2]); // normals
rlDeleteBuffers(amesh->vboId[3]); // colors
rlDeleteBuffers(amesh->vboId[4]); // tangents
rlDeleteBuffers(amesh->vboId[5]); // texcoords2
rlDeleteBuffers(amesh->vboId[6]); // indices
rlDeleteVertexArrays(amesh->vaoId);
}
// Update vertex and normal data into GPU
void rlUpdateAnimatedMesh(AnimatedMesh *amesh)
{
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Activate mesh VAO
glBindVertexArray(amesh->vaoId);
// Update positions data
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[0]);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*amesh->vertexCount, amesh->animVertices);
// Update normals data
glBindBuffer(GL_ARRAY_BUFFER, amesh->vboId[2]);
glBufferSubData(GL_ARRAY_BUFFER, 0, sizeof(float)*3*amesh->vertexCount, amesh->animNormals);
// Unbind the current VAO
glBindVertexArray(0);
//mesh.vertices = glMapBuffer(GL_ARRAY_BUFFER, GL_READ_WRITE);
// Now we can modify vertices
//glUnmapBuffer(GL_ARRAY_BUFFER);
#endif
}
// Draw a 3d mesh with material and transform
void rlDrawAnimatedMesh(AnimatedMesh amesh, Material material, Matrix transform)
{
#if defined(GRAPHICS_API_OPENGL_11)
/*
glEnable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, material.maps[MAP_DIFFUSE].texture.id);
// NOTE: On OpenGL 1.1 we use Vertex Arrays to draw model
glEnableClientState(GL_VERTEX_ARRAY); // Enable vertex array
glEnableClientState(GL_TEXTURE_COORD_ARRAY); // Enable texture coords array
//if (amesh.normals != NULL) glEnableClientState(GL_NORMAL_ARRAY); // Enable normals array
//if (amesh.colors != NULL) glEnableClientState(GL_COLOR_ARRAY); // Enable colors array
glVertexPointer(3, GL_FLOAT, 0, amesh.animVertices); // Pointer to vertex coords array
glTexCoordPointer(2, GL_FLOAT, 0, amesh.texcoords); // Pointer to texture coords array
if (amesh.animNormals != NULL) glNormalPointer(GL_FLOAT, 0, amesh.animNormals); // Pointer to normals array
//if (mesh.colors != NULL) glColorPointer(4, GL_UNSIGNED_BYTE, 0, mesh.colors); // Pointer to colors array
rlPushMatrix();
rlMultMatrixf(MatrixToFloat(transform));
rlColor4ub(material.maps[MAP_DIFFUSE].color.r, material.maps[MAP_DIFFUSE].color.g, material.maps[MAP_DIFFUSE].color.b, material.maps[MAP_DIFFUSE].color.a);
if (amesh.triangles != NULL) glDrawElements(GL_TRIANGLES, amesh.triangleCount*3, GL_UNSIGNED_SHORT, amesh.triangles);
else glDrawArrays(GL_TRIANGLES, 0, amesh.vertexCount);
rlPopMatrix();
glDisableClientState(GL_VERTEX_ARRAY); // Disable vertex array
glDisableClientState(GL_TEXTURE_COORD_ARRAY); // Disable texture coords array
if (amesh.animNormals != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable normals array
//if (mesh.colors != NULL) glDisableClientState(GL_NORMAL_ARRAY); // Disable colors array
glDisable(GL_TEXTURE_2D);
glBindTexture(GL_TEXTURE_2D, 0);
*/
#endif
#if defined(GRAPHICS_API_OPENGL_33) || defined(GRAPHICS_API_OPENGL_ES2)
// Bind shader program
glUseProgram(material.shader.id);
// Matrices and other values required by shader
//-----------------------------------------------------
// Calculate and send to shader model matrix (used by PBR shader)
if (material.shader.locs[LOC_MATRIX_MODEL] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_MODEL], transform);
// Upload to shader material.colDiffuse
if (material.shader.locs[LOC_COLOR_DIFFUSE] != -1)
glUniform4f(material.shader.locs[LOC_COLOR_DIFFUSE], (float)material.maps[MAP_DIFFUSE].color.r/255.0f,
(float)material.maps[MAP_DIFFUSE].color.g/255.0f,
(float)material.maps[MAP_DIFFUSE].color.b/255.0f,
(float)material.maps[MAP_DIFFUSE].color.a/255.0f);
// Upload to shader material.colSpecular (if available)
if (material.shader.locs[LOC_COLOR_SPECULAR] != -1)
glUniform4f(material.shader.locs[LOC_COLOR_SPECULAR], (float)material.maps[MAP_SPECULAR].color.r/255.0f,
(float)material.maps[MAP_SPECULAR].color.g/255.0f,
(float)material.maps[MAP_SPECULAR].color.b/255.0f,
(float)material.maps[MAP_SPECULAR].color.a/255.0f);
if (material.shader.locs[LOC_MATRIX_VIEW] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_VIEW], GetMatrixModelview());
if (material.shader.locs[LOC_MATRIX_PROJECTION] != -1) SetShaderValueMatrix(material.shader, material.shader.locs[LOC_MATRIX_PROJECTION], projection);
// At this point the modelview matrix just contains the view matrix (camera)
// That's because BeginMode3D() sets it an no model-drawing function modifies it, all use rlPushMatrix() and rlPopMatrix()
Matrix matView = GetMatrixModelview(); // View matrix (camera)
Matrix matProjection = projection; // Projection matrix (perspective)
// Calculate model-view matrix combining matModel and matView
Matrix matModelView = MatrixMultiply(transform, matView); // Transform to camera-space coordinates
//-----------------------------------------------------
// Bind active texture maps (if available)
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
if (material.maps[i].texture.id > 0)
{
glActiveTexture(GL_TEXTURE0 + i);
if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, material.maps[i].texture.id);
else glBindTexture(GL_TEXTURE_2D, material.maps[i].texture.id);
glUniform1i(material.shader.locs[LOC_MAP_DIFFUSE + i], i);
}
}
glBindVertexArray(amesh.vaoId);
/*
// Bind vertex array objects (or VBOs)
if (vaoSupported) glBindVertexArray(amesh.vaoId);
else
{
// TODO: Simplify VBO binding into a for loop
// Bind mesh VBO data: vertex position (shader-location = 0)
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[0]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_POSITION], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_POSITION]);
// Bind mesh VBO data: vertex texcoords (shader-location = 1)
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[1]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TEXCOORD01], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TEXCOORD01]);
// Bind mesh VBO data: vertex normals (shader-location = 2, if available)
if (material.shader.locs[LOC_VERTEX_NORMAL] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[2]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_NORMAL], 3, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_NORMAL]);
}
// Bind mesh VBO data: vertex colors (shader-location = 3, if available)
if (material.shader.locs[LOC_VERTEX_COLOR] != -1)
{
if (amesh.vboId[3] != 0)
{
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[3]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_COLOR], 4, GL_UNSIGNED_BYTE, GL_TRUE, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_COLOR]);
}
else
{
// Set default value for unused attribute
// NOTE: Required when using default shader and no VAO support
glVertexAttrib4f(material.shader.locs[LOC_VERTEX_COLOR], 1.0f, 1.0f, 1.0f, 1.0f);
glDisableVertexAttribArray(material.shader.locs[LOC_VERTEX_COLOR]);
}
}
// Bind mesh VBO data: vertex tangents (shader-location = 4, if available)
if (material.shader.locs[LOC_VERTEX_TANGENT] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[4]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TANGENT], 4, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TANGENT]);
}
// Bind mesh VBO data: vertex texcoords2 (shader-location = 5, if available)
if (material.shader.locs[LOC_VERTEX_TEXCOORD02] != -1)
{
glBindBuffer(GL_ARRAY_BUFFER, amesh.vboId[5]);
glVertexAttribPointer(material.shader.locs[LOC_VERTEX_TEXCOORD02], 2, GL_FLOAT, 0, 0, 0);
glEnableVertexAttribArray(material.shader.locs[LOC_VERTEX_TEXCOORD02]);
}
if (amesh.triangles != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, amesh.vboId[6]);
}
*/
int eyesCount = 1;
#if defined(SUPPORT_VR_SIMULATOR)
if (vrStereoRender) eyesCount = 2;
#endif
for (int eye = 0; eye < eyesCount; eye++)
{
if (eyesCount == 1) modelview = matModelView;
#if defined(SUPPORT_VR_SIMULATOR)
else SetStereoView(eye, matProjection, matModelView);
#endif
// Calculate model-view-projection matrix (MVP)
Matrix matMVP = MatrixMultiply(modelview, projection); // Transform to screen-space coordinates
// Send combined model-view-projection matrix to shader
glUniformMatrix4fv(material.shader.locs[LOC_MATRIX_MVP], 1, false, MatrixToFloat(matMVP));
// Draw call!
if (amesh.triangles != NULL) glDrawElements(GL_TRIANGLES, amesh.triangleCount*3, GL_UNSIGNED_SHORT, 0); // Indexed vertices draw
else glDrawArrays(GL_TRIANGLES, 0, amesh.vertexCount);
}
// Unbind all binded texture maps
for (int i = 0; i < MAX_MATERIAL_MAPS; i++)
{
glActiveTexture(GL_TEXTURE0 + i); // Set shader active texture
if ((i == MAP_IRRADIANCE) || (i == MAP_PREFILTER) || (i == MAP_CUBEMAP)) glBindTexture(GL_TEXTURE_CUBE_MAP, 0);
else glBindTexture(GL_TEXTURE_2D, 0); // Unbind current active texture
}
glBindVertexArray(0);
/*
// Unind vertex array objects (or VBOs)
if (vaoSupported) glBindVertexArray(0);
else
{
glBindBuffer(GL_ARRAY_BUFFER, 0);
if (amesh.triangles != NULL) glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
}
*/
// Unbind shader program
glUseProgram(0);
// Restore projection/modelview matrices
// NOTE: In stereo rendering matrices are being modified to fit every eye
projection = matProjection;
modelview = matView;
#endif
}
#ifdef __cplusplus
extern "C" { // Prevents name mangling of functions
#endif
@ -668,7 +233,7 @@ AnimatedModel LoadAnimatedModel(const char *filename)
{
AnimatedModel out = LoadIQM(filename);
for (int i = 0; i < out.meshCount; i++) rlLoadAnimatedMesh(&out.mesh[i], false);
for (int i = 0; i < out.meshCount; i++) rlLoadMesh(&out.mesh[i], false);
out.transform = MatrixIdentity();
out.meshMaterialId = malloc(sizeof(int)*out.meshCount);
@ -901,7 +466,7 @@ void UnloadAnimatedModel(AnimatedModel model)
free(model.joints);
free(model.basepose);
for (int i = 0; i < model.meshCount; i++) rlUnloadAnimatedMesh(&model.mesh[i]);
for (int i = 0; i < model.meshCount; i++) rlUnloadMesh(&model.mesh[i]);
free(model.mesh);
}
@ -961,21 +526,23 @@ void AnimateModel(AnimatedModel model, Animation anim, int frame)
outs = anim.framepose[frame][weightId].scale;
// vertices
outv = (Vector3){model.mesh[m].vertices[vcounter],model.mesh[m].vertices[vcounter + 1],model.mesh[m].vertices[vcounter + 2]};
outv = Vector3MultiplyV(outv,outs);
outv = Vector3Subtract(outv,baset);
outv = Vector3RotateByQuaternion(outv,QuaternionMultiply(outr,QuaternionInvert(baser)));
outv = Vector3Add(outv,outt);
model.mesh[m].animVertices[vcounter] = outv.x;
model.mesh[m].animVertices[vcounter + 1] = outv.y;
model.mesh[m].animVertices[vcounter + 2] = outv.z;
// NOTE: We use mesh.baseVertices (default position) to calculate mesh.vertices (animated position)
outv = (Vector3){ model.mesh[m].baseVertices[vcounter], model.mesh[m].baseVertices[vcounter + 1], model.mesh[m].baseVertices[vcounter + 2] };
outv = Vector3MultiplyV(outv, outs);
outv = Vector3Subtract(outv, baset);
outv = Vector3RotateByQuaternion(outv, QuaternionMultiply(outr, QuaternionInvert(baser)));
outv = Vector3Add(outv, outt);
model.mesh[m].vertices[vcounter] = outv.x;
model.mesh[m].vertices[vcounter + 1] = outv.y;
model.mesh[m].vertices[vcounter + 2] = outv.z;
// normals
outn = (Vector3){model.mesh[m].normals[vcounter],model.mesh[m].normals[vcounter + 1],model.mesh[m].normals[vcounter + 2]};
outn = Vector3RotateByQuaternion(outn,QuaternionMultiply(outr,QuaternionInvert(baser)));
model.mesh[m].animNormals[vcounter] = outn.x;
model.mesh[m].animNormals[vcounter + 1] = outn.y;
model.mesh[m].animNormals[vcounter + 2] = outn.z;
// NOTE: We use mesh.baseNormals (default normal) to calculate mesh.normals (animated normals)
outn = (Vector3){ model.mesh[m].baseNormals[vcounter], model.mesh[m].baseNormals[vcounter + 1], model.mesh[m].baseNormals[vcounter + 2] };
outn = Vector3RotateByQuaternion(outn, QuaternionMultiply(outr, QuaternionInvert(baser)));
model.mesh[m].normals[vcounter] = outn.x;
model.mesh[m].normals[vcounter + 1] = outn.y;
model.mesh[m].normals[vcounter + 2] = outn.z;
vcounter += 3;
wcounter += 4;
}
@ -983,16 +550,16 @@ void AnimateModel(AnimatedModel model, Animation anim, int frame)
}
// Draw an animated model
void DrawAnimatedModel(AnimatedModel model,Vector3 position,float scale,Color tint)
void DrawAnimatedModel(AnimatedModel model, Vector3 position, float scale, Color tint)
{
Vector3 vScale = { scale, scale, scale };
Vector3 rotationAxis = { 0.0f,0.0f,0.0f };
Vector3 rotationAxis = { 1.0f, 0.0f,0.0f };
DrawAnimatedModelEx(model, position, rotationAxis, 0.0f, vScale, tint);
DrawAnimatedModelEx(model, position, rotationAxis, -90.0f, vScale, tint);
}
// Draw an animated model with extended parameters
void DrawAnimatedModelEx(AnimatedModel model,Vector3 position,Vector3 rotationAxis,float rotationAngle, Vector3 scale,Color tint)
void DrawAnimatedModelEx(AnimatedModel model, Vector3 position, Vector3 rotationAxis, float rotationAngle, Vector3 scale, Color tint)
{
if (model.materialCount == 0)
{
@ -1000,25 +567,21 @@ void DrawAnimatedModelEx(AnimatedModel model,Vector3 position,Vector3 rotationAx
return;
}
Matrix matScale = MatrixScale(scale.x,scale.y,scale.z);
Matrix matRotation = MatrixRotate(rotationAxis,rotationAngle*DEG2RAD);
Matrix matTranslation = MatrixTranslate(position.x,position.y,position.z);
Matrix matScale = MatrixScale(scale.x, scale.y, scale.z);
Matrix matRotation = MatrixRotate(rotationAxis, rotationAngle*DEG2RAD);
Matrix matTranslation = MatrixTranslate(position.x, position.y, position.z);
Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale,matRotation),matTranslation);
model.transform = MatrixMultiply(model.transform,matTransform);
Matrix matTransform = MatrixMultiply(MatrixMultiply(matScale, matRotation), matTranslation);
model.transform = MatrixMultiply(model.transform, matTransform);
for (int i = 0; i < model.meshCount; i++)
{
rlUpdateAnimatedMesh(&model.mesh[i]);
rlDrawAnimatedMesh(model.mesh[i],model.materials[model.meshMaterialId[i]],MatrixIdentity());
rlUpdateMesh(model.mesh[i], 0, model.mesh[i].vertexCount); // Update vertex position
rlUpdateMesh(model.mesh[i], 2, model.mesh[i].vertexCount); // Update vertex normals
rlDrawMesh(model.mesh[i], model.materials[model.meshMaterialId[i]], model.transform); // Draw mesh
}
}
// Load animated model meshes from IQM file
static AnimatedModel LoadIQM(const char *filename)
{
@ -1069,22 +632,29 @@ static AnimatedModel LoadIQM(const char *filename)
fread(imesh, sizeof(IQMMesh)*iqm.num_meshes, 1, iqmFile);
model.meshCount = iqm.num_meshes;
model.mesh = malloc(sizeof(AnimatedMesh)*iqm.num_meshes);
model.mesh = malloc(sizeof(Mesh)*iqm.num_meshes);
char name[MESH_NAME_LENGTH];
for (int i = 0; i < iqm.num_meshes; i++)
{
fseek(iqmFile,iqm.ofs_text+imesh[i].name,SEEK_SET);
fread(model.mesh[i].name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile);
fread(name, sizeof(char)*MESH_NAME_LENGTH, 1, iqmFile); // Mesh name not used...
model.mesh[i].vertexCount = imesh[i].num_vertexes;
model.mesh[i].vertices = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.mesh[i].normals = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.mesh[i].baseVertices = malloc(sizeof(float)*imesh[i].num_vertexes*3); // Default IQM base position
model.mesh[i].baseNormals = malloc(sizeof(float)*imesh[i].num_vertexes*3); // Default IQM base normal
model.mesh[i].texcoords = malloc(sizeof(float)*imesh[i].num_vertexes*2);
model.mesh[i].weightId = malloc(sizeof(int)*imesh[i].num_vertexes*4);
model.mesh[i].weightBias = malloc(sizeof(float)*imesh[i].num_vertexes*4);
model.mesh[i].triangleCount = imesh[i].num_triangles;
model.mesh[i].triangles = malloc(sizeof(unsigned short)*imesh[i].num_triangles*3);
model.mesh[i].animVertices = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.mesh[i].animNormals = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.mesh[i].indices = malloc(sizeof(unsigned short)*imesh[i].num_triangles*3);
// What we actually process for rendering, should be updated transforming mesh.vertices and mesh.normals
model.mesh[i].vertices = malloc(sizeof(float)*imesh[i].num_vertexes*3);
model.mesh[i].normals = malloc(sizeof(float)*imesh[i].num_vertexes*3);
}
// tris
@ -1096,12 +666,12 @@ static AnimatedModel LoadIQM(const char *filename)
{
int tcounter = 0;
for (int i=imesh[m].first_triangle; i < imesh[m].first_triangle+imesh[m].num_triangles; i++)
for (int i = imesh[m].first_triangle; i < imesh[m].first_triangle+imesh[m].num_triangles; i++)
{
// IQM triangles are stored counter clockwise, but raylib sets opengl to clockwise drawing, so we swap them around
model.mesh[m].triangles[tcounter+2] = tri[i].vertex[0] - imesh[m].first_vertex;
model.mesh[m].triangles[tcounter+1] = tri[i].vertex[1] - imesh[m].first_vertex;
model.mesh[m].triangles[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
model.mesh[m].indices[tcounter+2] = tri[i].vertex[0] - imesh[m].first_vertex;
model.mesh[m].indices[tcounter+1] = tri[i].vertex[1] - imesh[m].first_vertex;
model.mesh[m].indices[tcounter] = tri[i].vertex[2] - imesh[m].first_vertex;
tcounter += 3;
}
}
@ -1127,7 +697,7 @@ static AnimatedModel LoadIQM(const char *filename)
for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
{
model.mesh[m].vertices[vcounter] = vertex[i];
model.mesh[m].animVertices[vcounter] = vertex[i];
model.mesh[m].baseVertices[vcounter] = vertex[i];
vcounter++;
}
}
@ -1144,7 +714,7 @@ static AnimatedModel LoadIQM(const char *filename)
for (int i = imesh[m].first_vertex*3; i < (imesh[m].first_vertex + imesh[m].num_vertexes)*3; i++)
{
model.mesh[m].normals[vcounter] = normal[i];
model.mesh[m].animNormals[vcounter] = normal[i];
model.mesh[m].baseNormals[vcounter] = normal[i];
vcounter++;
}
}