Reviewed shaders formating to follow raylib coding conventions

This commit is contained in:
Ray
2025-01-11 19:36:46 +01:00
parent 49b905077d
commit 8e450e4446
6 changed files with 151 additions and 148 deletions

View File

@ -54,23 +54,22 @@ uniform vec3 viewPos;
uniform vec3 ambientColor;
uniform float ambient;
// refl in range 0 to 1
// returns base reflectivity to 1
// incrase reflectivity when surface view at larger angle
vec3 schlickFresnel(float hDotV,vec3 refl)
// Reflectivity in range 0.0 to 1.0
// NOTE: Reflectivity is increased when surface view at larger angle
vec3 SchlickFresnel(float hDotV,vec3 refl)
{
return refl + (1.0 - refl)*pow(1.0 - hDotV,5.0);
return refl + (1.0 - refl)*pow(1.0 - hDotV, 5.0);
}
float ggxDistribution(float nDotH, float roughness)
float GgxDistribution(float nDotH,float roughness)
{
float a = roughness*roughness*roughness*roughness;
float d = nDotH*nDotH*(a - 1.0) + 1.0;
d = PI*d*d;
return a/max(d,0.0000001);
return (a/max(d,0.0000001));
}
float geomSmith(float nDotV, float nDotL, float roughness)
float GeomSmith(float nDotV,float nDotL,float roughness)
{
float r = roughness + 1.0;
float k = r*r/8.0;
@ -80,7 +79,7 @@ float geomSmith(float nDotV, float nDotL, float roughness)
return ggx1*ggx2;
}
vec3 pbr()
vec3 ComputePBR()
{
vec3 albedo = texture2D(albedoMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb;
albedo = vec3(albedoColor.x*albedo.x, albedoColor.y*albedo.y, albedoColor.z*albedo.z);
@ -104,23 +103,23 @@ vec3 pbr()
N = normalize(N*2.0 - 1.0);
N = normalize(N*TBN);
}
vec3 V = normalize(viewPos - fragPosition);
vec3 e = vec3(0);
e = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);
vec3 emissive = vec3(0);
emissive = (texture2D(emissiveMap, vec2(fragTexCoord.x*tiling.x + offset.x, fragTexCoord.y*tiling.y + offset.y)).rgb).g*emissiveColor.rgb*emissivePower*float(useTexEmissive);
// return N;//vec3(metallic,metallic,metallic);
// If dia-electric use base reflectivity of 0.04 otherwise ut is a metal use albedo as base reflectivity
vec3 baseRefl = mix(vec3(0.04), albedo.rgb, metallic);
vec3 Lo = vec3(0.0); // Acumulate lighting lum
vec3 lightAccum = vec3(0.0); // Acumulate lighting lum
for (int i = 0; i < 4; i++)
{
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 L = normalize(lights[i].position - fragPosition); // Compute light vector
vec3 H = normalize(V + L); // Compute halfway bisecting vector
float dist = length(lights[i].position - fragPosition); // Compute distance to light
float attenuation = 1.0/(dist*dist*0.23); // Compute attenuation
vec3 radiance = lights[i].color.rgb*lights[i].intensity*attenuation; // Compute input radiance, light energy comming in
// Cook-Torrance BRDF distribution function
@ -128,9 +127,9 @@ vec3 pbr()
float nDotL = max(dot(N,L), 0.0000001);
float hDotV = max(dot(H,V), 0.0);
float nDotH = max(dot(N,H), 0.0);
float D = ggxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = geomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = schlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
float D = GgxDistribution(nDotH, roughness); // Larger the more micro-facets aligned to H
float G = GeomSmith(nDotV, nDotL, roughness); // Smaller the more micro-facets shadow
vec3 F = SchlickFresnel(hDotV, baseRefl); // Fresnel proportion of specular reflectance
vec3 spec = (D*G*F)/(4.0*nDotV*nDotL);
@ -138,25 +137,25 @@ vec3 pbr()
// kD = 1.0 - kS diffuse component is equal 1.0 - spec comonent
vec3 kD = vec3(1.0) - F;
// Mult kD by the inverse of metallnes , only non-metals should have diffuse light
// Mult kD by the inverse of metallnes, only non-metals should have diffuse light
kD *= 1.0 - metallic;
Lo += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
lightAccum += ((kD*albedo.rgb/PI + spec)*radiance*nDotL)*float(lights[i].enabled); // Angle of light has impact on result
}
vec3 ambientFinal = (ambientColor + albedo)*ambient*0.5;
return (ambientFinal + Lo*ao + e);
return (ambientFinal + lightAccum*ao + emissive);
}
void main()
{
vec3 color = pbr();
vec3 color = ComputePBR();
// HDR tonemapping
color = pow(color,color + vec3(1.0));
color = pow(color, color + vec3(1.0));
// Gamma correction
color = pow(color,vec3(1.0/2.2));
color = pow(color, vec3(1.0/2.2));
gl_FragColor = vec4(color,1.0);
}

View File

@ -51,16 +51,16 @@ mat3 transpose(mat3 m)
void main()
{
// calc binormal from vertex normal and tangent
// Compute binormal from vertex normal and tangent
vec3 vertexBinormal = cross(vertexNormal, vertexTangent);
// calc fragment normal based on normal transformations
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
// calc fragment position based on model transformations
// Compute fragment normal based on normal transformations
mat3 normalMatrix = transpose(inverse(mat3(matModel)));
// Compute fragment position based on model transformations
fragPosition = vec3(matModel*vec4(vertexPosition, 1.0));
fragTexCoord = vertexTexCoord*2.0;
fragNormal = normalize(normalMatrix*vertexNormal);
vec3 fragTangent = normalize(normalMatrix*vertexTangent);
fragTangent = normalize(fragTangent - dot(fragTangent, fragNormal)*fragNormal);
@ -70,5 +70,5 @@ void main()
TBN = transpose(mat3(fragTangent, fragBinormal, fragNormal));
// Calculate final vertex position
gl_Position = mvp * vec4(vertexPosition, 1.0);
gl_Position = mvp*vec4(vertexPosition, 1.0);
}