4 Commits

Author SHA1 Message Date
Ray
efe62f0e0d Formating review to follow raylib code conventions #5298 2025-10-25 11:15:30 +02:00
Ray
79fd6be008 Minor format tweaks 2025-10-25 11:14:53 +02:00
dbcc508196 [examples] Added models_decals (#5298)
* Added decal models example

* Code formatting to match Raylib conventions
2025-10-25 10:41:39 +02:00
4bb8c89084 Don't undefine the versions of LoadImage that don't conflict with raylib so that the Win32 platform can use them. (#5299) 2025-10-25 09:49:31 +02:00
8 changed files with 4038 additions and 45 deletions

View File

@ -0,0 +1,538 @@
/*******************************************************************************************
*
* raylib [models] example - decals
*
* Example complexity rating: [★★★★] 4/4
*
* Example originally created with raylib 5.6-dev
*
* Example contributed by JP Mortiboys (@themushroompirates) and reviewed by Ramon Santamaria (@raysan5)
* Based on previous work by @mrdoob
*
* Example licensed under an unmodified zlib/libpng license, which is an OSI-certified,
* BSD-like license that allows static linking with closed source software
*
* Copyright (c) 2025 JP Mortiboys (@themushroompirates) and Ramon Santamaria (@raysan5)
*
********************************************************************************************/
#include "raylib.h"
#include "raymath.h"
#include <string.h> // Required for: memcpy()
#undef FLT_MAX
#define FLT_MAX 340282346638528859811704183484516925440.0f // Maximum value of a float, from bit pattern 01111111011111111111111111111111
#define MAX_DECALS 256
//----------------------------------------------------------------------------------
// Types and Structures Definition
//----------------------------------------------------------------------------------
typedef struct MeshBuilder {
int vertexCount;
int vertexCapacity;
Vector3 *vertices;
Vector2 *uvs;
} MeshBuilder;
//------------------------------------------------------------------------------------
// Module Functions Declaration
//------------------------------------------------------------------------------------
static void AddTriangleToMeshBuilder(MeshBuilder *mb, Vector3 vertices[3]);
static void FreeMeshBuilder(MeshBuilder *mb);
static Mesh BuildMesh(MeshBuilder *mb);
static Mesh GenMeshDecal(Mesh inputMesh, Ray ray);
static Vector3 ClipSegment(Vector3 v0, Vector3 v1, Vector3 p, float s);
//------------------------------------------------------------------------------------
// Program main entry point
//------------------------------------------------------------------------------------
int main(void)
{
// Initialization
//--------------------------------------------------------------------------------------
const int screenWidth = 800;
const int screenHeight = 450;
SetConfigFlags(FLAG_MSAA_4X_HINT);
InitWindow(screenWidth, screenHeight, "raylib [models] example - decals");
// Define the camera to look into our 3d world
Camera camera = { 0 };
camera.position = (Vector3){ 5.0f, 5.0f, 5.0f }; // Camera position
camera.target = (Vector3){ 0.0f, 1.0f, 0.0f }; // Camera looking at point
camera.up = (Vector3){ 0.0f, 1.6f, 0.0f }; // Camera up vector (rotation towards target)
camera.fovy = 45.0f; // Camera field-of-view Y
camera.projection = CAMERA_PERSPECTIVE; // Camera projection type
// Load character model
Model model = LoadModel("resources/models/obj/character.obj");
// Apply character skin
Texture2D modelTexture = LoadTexture("resources/models/obj/character_diffuse.png");
SetTextureFilter(modelTexture, TEXTURE_FILTER_BILINEAR);
model.materials[0].maps[MATERIAL_MAP_DIFFUSE].texture = modelTexture;
BoundingBox modelBBox = GetMeshBoundingBox(model.meshes[0]); // Get mesh bounding box
camera.target = Vector3Lerp(modelBBox.min, modelBBox.max, 0.5f);
camera.position = Vector3Scale(modelBBox.max, 1.0f);
camera.position.x *= 0.1f;
float modelSize = fminf(
fminf(fabsf(modelBBox.max.x - modelBBox.min.x), fabsf(modelBBox.max.y - modelBBox.min.y)),
fabsf(modelBBox.max.z - modelBBox.min.z));
camera.position = (Vector3){ 0.0f, modelBBox.max.y*1.2f, modelSize*3.0f };
float decalSize = modelSize*0.25f;
float decalOffset = 0.01f;
Model placementCube = LoadModelFromMesh(GenMeshCube(decalSize, decalSize, decalSize));
placementCube.materials[0].maps[0].color = LIME;
Material decalMaterial = LoadMaterialDefault();
decalMaterial.maps[0].color = YELLOW;
Image decalImage = LoadImage("resources/raylib_logo.png");
ImageResizeNN(&decalImage, decalImage.width/4, decalImage.height/4);
Texture decalTexture = LoadTextureFromImage(decalImage);
UnloadImage(decalImage);
SetTextureFilter(decalTexture, TEXTURE_FILTER_BILINEAR);
decalMaterial.maps[MATERIAL_MAP_DIFFUSE].texture = decalTexture;
decalMaterial.maps[MATERIAL_MAP_DIFFUSE].color = RAYWHITE;
// We're going to use these to build up our decal meshes
// They'll resize automatically as we go, we'll free them at the end
MeshBuilder meshBuilders[2] = { 0 };
bool showModel = true;
Model decalModels[MAX_DECALS] = { 0 };
int decalCount = 0;
SetTargetFPS(60); // Set our game to run at 60 frames-per-second
//--------------------------------------------------------------------------------------
// Main game loop
while (!WindowShouldClose()) // Detect window close button or ESC key
{
// Update
//----------------------------------------------------------------------------------
if (IsMouseButtonDown(MOUSE_BUTTON_RIGHT)) UpdateCamera(&camera, CAMERA_THIRD_PERSON);
if (IsKeyPressed(KEY_SPACE)) showModel = !showModel;
// Display information about closest hit
RayCollision collision = { 0 };
collision.distance = FLT_MAX;
collision.hit = false;
// Get mouse ray
Ray ray = GetScreenToWorldRay(GetMousePosition(), camera);
// Check ray collision against bounding box first, before trying the full ray-mesh test
RayCollision boxHitInfo = GetRayCollisionBox(ray, modelBBox);
if ((boxHitInfo.hit) && (decalCount < MAX_DECALS))
{
// Check ray collision against model meshes
RayCollision meshHitInfo = { 0 };
for (int m = 0; m < model.meshCount; m++)
{
// NOTE: We consider the model.transform for the collision check but
// it can be checked against any transform Matrix, used when checking against same
// model drawn multiple times with multiple transforms
meshHitInfo = GetRayCollisionMesh(ray, model.meshes[m], model.transform);
if (meshHitInfo.hit)
{
// Save the closest hit mesh
if (!collision.hit || (collision.distance > meshHitInfo.distance)) collision = meshHitInfo;
}
}
if (meshHitInfo.hit) collision = meshHitInfo;
}
// Add decal to mesh on hit point
if (collision.hit && IsMouseButtonPressed(MOUSE_BUTTON_LEFT) && (decalCount < MAX_DECALS))
{
// Create the transformation to project the decal
Vector3 origin = Vector3Add(collision.point, Vector3Scale(collision.normal, 1.0f));
Matrix splat = MatrixLookAt(collision.point, origin, (Vector3){ 0.0f, 1.0f, 0.0f });
// Spin the placement around a bit
splat = MatrixMultiply(splat, MatrixRotateZ(DEG2RAD*((float)GetRandomValue(-180, 180))));
Matrix splatInv = MatrixInvert(splat);
// Reset the mesh builders
meshBuilders[0].vertexCount = 0;
meshBuilders[1].vertexCount = 0;
// We'll be flip-flopping between the two mesh builders
// Reading from one and writing to the other, then swapping
int mbIndex = 0;
// First pass, just get any triangle inside the bounding box (for each mesh of the model)
for (int meshIndex = 0; meshIndex < model.meshCount; meshIndex++)
{
Mesh mesh = model.meshes[meshIndex];
for (int tri = 0; tri < mesh.triangleCount; tri++)
{
Vector3 vertices[3] = { 0 };
// The way we calculate the vertices of the mesh triangle
// depend on whether the mesh vertices are indexed or not
if (mesh.indices == 0)
{
for (int v = 0; v < 3; v++)
{
vertices[v] = (Vector3){
mesh.vertices[3*3*tri + 3*v + 0],
mesh.vertices[3*3*tri + 3*v + 1],
mesh.vertices[3*3*tri + 3*v + 2]
};
}
}
else
{
for (int v = 0; v < 3; v++)
{
vertices[v] = (Vector3){
mesh.vertices[ 3*mesh.indices[3*tri+0] + v],
mesh.vertices[ 3*mesh.indices[3*tri+1] + v],
mesh.vertices[ 3*mesh.indices[3*tri+2] + v]
};
}
}
// Transform all 3 vertices of the triangle
// and check if they are inside our decal box
int insideCount = 0;
for (int i = 0; i < 3; i++)
{
// To splat space
Vector3 v = Vector3Transform(vertices[i], splat);
if ((fabsf(v.x) < decalSize) || (fabsf(v.y) <= decalSize) || (fabsf(v.z) <= decalSize)) insideCount++;
// We need to keep the transformed vertex
vertices[i] = v;
}
// If any of them are inside, we add the triangle - we'll clip it later
if (insideCount > 0) AddTriangleToMeshBuilder(&meshBuilders[mbIndex], vertices);
}
}
// Clipping time! We need to clip against all 6 directions
Vector3 planes[6] = {
{ 1, 0, 0 },
{ -1, 0, 0 },
{ 0, 1, 0 },
{ 0, -1, 0 },
{ 0, 0, 1 },
{ 0, 0, -1 }
};
for (int face = 0; face < 6; face++)
{
// Swap current model builder (so we read from the one we just wrote to)
mbIndex = 1 - mbIndex;
MeshBuilder *inMesh = &meshBuilders[1 - mbIndex];
MeshBuilder *outMesh = &meshBuilders[mbIndex];
// Reset write builder
outMesh->vertexCount = 0;
float s = 0.5f*decalSize;
for (int i = 0; i < inMesh->vertexCount; i += 3)
{
Vector3 nV1, nV2, nV3, nV4;
float d1 = Vector3DotProduct(inMesh->vertices[ i + 0 ], planes[face] ) - s;
float d2 = Vector3DotProduct(inMesh->vertices[ i + 1 ], planes[face] ) - s;
float d3 = Vector3DotProduct(inMesh->vertices[ i + 2 ], planes[face] ) - s;
int v1Out = (d1 > 0);
int v2Out = (d2 > 0);
int v3Out = (d3 > 0);
// Calculate, how many vertices of the face lie outside of the clipping plane
int total = v1Out + v2Out + v3Out;
switch (total)
{
case 0:
{
// The entire face lies inside of the plane, no clipping needed
AddTriangleToMeshBuilder(outMesh, (Vector3[3]){inMesh->vertices[i], inMesh->vertices[i+1], inMesh->vertices[i+2]});
} break;
case 1:
{
// One vertex lies outside of the plane, perform clipping
if (v1Out)
{
nV1 = inMesh->vertices[i + 1];
nV2 = inMesh->vertices[i + 2];
nV3 = ClipSegment(inMesh->vertices[i], nV1, planes[face], s);
nV4 = ClipSegment(inMesh->vertices[i], nV2, planes[face], s);
}
if (v2Out)
{
nV1 = inMesh->vertices[i];
nV2 = inMesh->vertices[i + 2];
nV3 = ClipSegment(inMesh->vertices[i + 1], nV1, planes[face], s);
nV4 = ClipSegment(inMesh->vertices[i + 1], nV2, planes[face], s);
AddTriangleToMeshBuilder(outMesh, (Vector3[3]){nV3, nV2, nV1});
AddTriangleToMeshBuilder(outMesh, (Vector3[3]){nV2, nV3, nV4});
break;
}
if (v3Out)
{
nV1 = inMesh->vertices[i];
nV2 = inMesh->vertices[i + 1];
nV3 = ClipSegment(inMesh->vertices[i + 2], nV1, planes[face], s);
nV4 = ClipSegment(inMesh->vertices[i + 2], nV2, planes[face], s);
}
AddTriangleToMeshBuilder(outMesh, (Vector3[3]){nV1, nV2, nV3});
AddTriangleToMeshBuilder(outMesh, (Vector3[3]){nV4, nV3, nV2});
} break;
case 2:
{
// Two vertices lies outside of the plane, perform clipping
if (!v1Out)
{
nV1 = inMesh->vertices[i];
nV2 = ClipSegment(nV1, inMesh->vertices[i + 1], planes[face], s);
nV3 = ClipSegment(nV1, inMesh->vertices[i + 2], planes[face], s);
AddTriangleToMeshBuilder(outMesh, (Vector3[3]){nV1, nV2, nV3});
}
if (!v2Out)
{
nV1 = inMesh->vertices[i + 1];
nV2 = ClipSegment(nV1, inMesh->vertices[i + 2], planes[face], s);
nV3 = ClipSegment(nV1, inMesh->vertices[i], planes[face], s);
AddTriangleToMeshBuilder(outMesh, (Vector3[3]){nV1, nV2, nV3});
}
if (!v3Out)
{
nV1 = inMesh->vertices[i + 2];
nV2 = ClipSegment(nV1, inMesh->vertices[i], planes[face], s);
nV3 = ClipSegment(nV1, inMesh->vertices[i + 1], planes[face], s);
AddTriangleToMeshBuilder(outMesh, (Vector3[3]){nV1, nV2, nV3});
}
} break;
case 3: // The entire face lies outside of the plane, so let's discard the corresponding vertices
default: break;
}
}
}
// Now we just need to re-transform the vertices
MeshBuilder *theMesh = &meshBuilders[mbIndex];
// Allocate room for UVs
if (theMesh->vertexCount > 0)
{
theMesh->uvs = (Vector2 *)MemAlloc(sizeof(Vector2)*theMesh->vertexCount);
for (int i = 0; i < theMesh->vertexCount; i++)
{
// Calculate the UVs based on the projected coords
// They are clipped to (-decalSize .. decalSize) and we want them (0..1)
theMesh->uvs[i].x = (theMesh->vertices[i].x/decalSize + 0.5f);
theMesh->uvs[i].y = (theMesh->vertices[i].y/decalSize + 0.5f);
// From splat space to world space
theMesh->vertices[i] = Vector3Transform(theMesh->vertices[i], splatInv);
// Tiny nudge in the normal direction so it renders properly over the mesh
theMesh->vertices[i] = Vector3Add(theMesh->vertices[i], Vector3Scale(collision.normal, decalOffset));
}
// Decal model data ready, create it and add it
int decalIndex = decalCount++;
decalModels[decalIndex] = LoadModelFromMesh(BuildMesh(theMesh));
decalModels[decalIndex].materials[0] = decalMaterial;
}
}
//----------------------------------------------------------------------------------
// Draw
//----------------------------------------------------------------------------------
BeginDrawing();
ClearBackground(RAYWHITE);
BeginMode3D(camera);
// Draw the model at the origin and default scale
if (showModel) DrawModel(model, (Vector3){0.0f, 0.0f, 0.0f}, 1.0f, WHITE);
// Draw the decal models
for (int i = 0; i < decalCount; i++) DrawModel(decalModels[i], (Vector3){0}, 1.0f, WHITE);
// If we hit the mesh, draw the box for the decal
if (collision.hit)
{
Vector3 origin = Vector3Add(collision.point, Vector3Scale(collision.normal, 1.0f));
Matrix splat = MatrixLookAt(collision.point, origin, (Vector3){0,1,0});
placementCube.transform = MatrixInvert(splat);
DrawModel(placementCube, (Vector3){0}, 1.0f, Fade(WHITE, 0.5f));
}
DrawGrid(10, 10.0f);
EndMode3D();
float yPos = 10;
float x0 = GetScreenWidth() - 300;
float x1 = x0 + 100;
float x2 = x1 + 100;
DrawText("Vertices", x1, yPos, 10, LIME);
DrawText("Triangles", x2, yPos, 10, LIME);
yPos += 15;
int vertexCount = 0;
int triangleCount = 0;
for (int i = 0; i < model.meshCount; i++)
{
vertexCount += model.meshes[i].vertexCount;
triangleCount += model.meshes[i].triangleCount;
}
DrawText("Main model", x0, yPos, 10, LIME);
DrawText(TextFormat("%d", vertexCount), x1, yPos, 10, LIME);
DrawText(TextFormat("%d", triangleCount), x2, yPos, 10, LIME);
yPos += 15;
for (int i = 0; i < decalCount; i++)
{
DrawText(TextFormat("Decal #%d", i+1), x0, yPos, 10, LIME);
DrawText(TextFormat("%d", decalModels[i].meshes[0].vertexCount), x1, yPos, 10, LIME);
DrawText(TextFormat("%d", decalModels[i].meshes[0].triangleCount), x2, yPos, 10, LIME);
vertexCount += decalModels[i].meshes[0].vertexCount;
triangleCount += decalModels[i].meshes[0].triangleCount;
yPos += 15;
}
DrawText("TOTAL", x0, yPos, 10, LIME);
DrawText(TextFormat("%d", vertexCount), x1, yPos, 10, LIME);
DrawText(TextFormat("%d", triangleCount), x2, yPos, 10, LIME);
yPos += 15;
DrawText("Hold RMB to move camera", 10, 430, 10, GRAY);
DrawText("(c) Character model and texture from kenney.nl", screenWidth - 260, screenHeight - 20, 10, GRAY);
DrawFPS(10, 10);
EndDrawing();
//----------------------------------------------------------------------------------
}
// De-Initialization
//--------------------------------------------------------------------------------------
UnloadModel(model);
UnloadTexture(modelTexture);
// TODO: WARNING: This line crashes program on closing
//for (int i = 0; i < decalCount; i++) UnloadModel(decalModels[i]);
UnloadTexture(decalTexture);
FreeMeshBuilder(&meshBuilders[0]);
FreeMeshBuilder(&meshBuilders[1]);
CloseWindow(); // Close window and OpenGL context
//--------------------------------------------------------------------------------------
return 0;
}
//----------------------------------------------------------------------------------
// Module Functions Definition
//----------------------------------------------------------------------------------
// Add triangles to mesh builder (dynamic array manager)
static void AddTriangleToMeshBuilder(MeshBuilder *mb, Vector3 vertices[3])
{
// Reallocate and copy if we need to
if (mb->vertexCapacity <= (mb->vertexCount + 3))
{
int newVertexCapacity = (1 + (mb->vertexCapacity/256))*256;
Vector3 *newVertices = (Vector3 *)MemAlloc(newVertexCapacity*sizeof(Vector3));
if (mb->vertexCapacity > 0)
{
memcpy(newVertices, mb->vertices, mb->vertexCount*sizeof(Vector3));
MemFree(mb->vertices);
}
mb->vertices = newVertices;
mb->vertexCapacity = newVertexCapacity;
}
// Add 3 vertices
int index = mb->vertexCount;
mb->vertexCount += 3;
for (int i = 0; i < 3; i++) mb->vertices[index+i] = vertices[i];
}
// Free mesh builder
static void FreeMeshBuilder(MeshBuilder *mb)
{
MemFree(mb->vertices);
if (mb->uvs) MemFree(mb->uvs);
*mb = (MeshBuilder){ 0 };
}
// Build a Mesh from MeshBuilder data
static Mesh BuildMesh(MeshBuilder *mb)
{
Mesh outMesh = { 0 };
outMesh.vertexCount = mb->vertexCount;
outMesh.triangleCount = mb->vertexCount/3;
outMesh.vertices = MemAlloc(outMesh.vertexCount*3*sizeof(float));
if (mb->uvs) outMesh.texcoords = MemAlloc(outMesh.vertexCount*2*sizeof(float));
for (int i = 0; i < mb->vertexCount; i++)
{
outMesh.vertices[3*i+0] = mb->vertices[i].x;
outMesh.vertices[3*i+1] = mb->vertices[i].y;
outMesh.vertices[3*i+2] = mb->vertices[i].z;
if (mb->uvs)
{
outMesh.texcoords[2*i+0] = mb->uvs[i].x;
outMesh.texcoords[2*i+1] = mb->uvs[i].y;
}
}
UploadMesh(&outMesh, false);
return outMesh;
}
// Clip segment
static Vector3 ClipSegment(Vector3 v0, Vector3 v1, Vector3 p, float s)
{
float d0 = Vector3DotProduct(v0, p) - s;
float d1 = Vector3DotProduct(v1, p) - s;
float s0 = d0/(d0 - d1);
Vector3 position = Vector3Lerp(v0, v1, s0);
return position;
}

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

View File

@ -0,0 +1,12 @@
# Blender MTL File: 'None'
# Material Count: 1
newmtl skin
Ns 86.470579
Ka 1.000000 1.000000 1.000000
Kd 0.800000 0.800000 0.800000
Ks 0.500000 0.500000 0.500000
Ke 0.000000 0.000000 0.000000
Ni 1.450000
d 0.000000
illum 9

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

71
src/external/rlsw.h vendored
View File

@ -791,7 +791,6 @@ typedef struct {
} sw_vertex_t;
typedef struct {
uint8_t *pixels; // Texture pixels (RGBA32)
int width, height; // Dimensions of the texture
@ -805,7 +804,6 @@ typedef struct {
float tx; // Texel width
float ty; // Texel height
} sw_texture_t;
typedef struct {
@ -881,7 +879,6 @@ typedef struct {
int freeTextureIdCount;
uint32_t stateFlags;
} sw_context_t;
//----------------------------------------------------------------------------------
@ -966,11 +963,7 @@ static inline int sw_clampi(int v, int min, int max)
return v;
}
static inline void sw_lerp_vertex_PTCH(
sw_vertex_t *SW_RESTRICT out,
const sw_vertex_t *SW_RESTRICT a,
const sw_vertex_t *SW_RESTRICT b,
float t)
static inline void sw_lerp_vertex_PTCH(sw_vertex_t *SW_RESTRICT out, const sw_vertex_t *SW_RESTRICT a, const sw_vertex_t *SW_RESTRICT b, float t)
{
const float tInv = 1.0f - t;
@ -997,11 +990,7 @@ static inline void sw_lerp_vertex_PTCH(
out->homogeneous[3] = a->homogeneous[3]*tInv + b->homogeneous[3]*t;
}
static inline void sw_get_vertex_grad_PTCH(
sw_vertex_t *SW_RESTRICT out,
const sw_vertex_t *SW_RESTRICT a,
const sw_vertex_t *SW_RESTRICT b,
float scale)
static inline void sw_get_vertex_grad_PTCH(sw_vertex_t *SW_RESTRICT out, const sw_vertex_t *SW_RESTRICT a, const sw_vertex_t *SW_RESTRICT b, float scale)
{
// Calculate gradients for Position
out->position[0] = (b->position[0] - a->position[0])*scale;
@ -1026,9 +1015,7 @@ static inline void sw_get_vertex_grad_PTCH(
out->homogeneous[3] = (b->homogeneous[3] - a->homogeneous[3])*scale;
}
static inline void sw_add_vertex_grad_PTCH(
sw_vertex_t *SW_RESTRICT out,
const sw_vertex_t *SW_RESTRICT gradients)
static inline void sw_add_vertex_grad_PTCH(sw_vertex_t *SW_RESTRICT out, const sw_vertex_t *SW_RESTRICT gradients)
{
// Add gradients to Position
out->position[0] += gradients->position[0];
@ -1065,7 +1052,6 @@ static inline void sw_float_to_unorm8_simd(uint8_t dst[4], const float src[4])
uint8x8_t narrow8 = vmovn_u16(vcombine_u16(narrow16, narrow16));
vst1_lane_u32((uint32_t*)dst, vreinterpret_u32_u8(narrow8), 0);
#elif defined(SW_HAS_SSE41)
__m128 values = _mm_loadu_ps(src);
__m128 scaled = _mm_mul_ps(values, _mm_set1_ps(255.0f));
@ -1075,7 +1061,6 @@ static inline void sw_float_to_unorm8_simd(uint8_t dst[4], const float src[4])
clamped = _mm_packus_epi32(clamped, clamped);
clamped = _mm_packus_epi16(clamped, clamped);
*(uint32_t*)dst = _mm_cvtsi128_si32(clamped);
#elif defined(SW_HAS_SSE2)
__m128 values = _mm_loadu_ps(src);
__m128 scaled = _mm_mul_ps(values, _mm_set1_ps(255.0f));
@ -1085,7 +1070,6 @@ static inline void sw_float_to_unorm8_simd(uint8_t dst[4], const float src[4])
clamped = _mm_packs_epi32(clamped, clamped);
clamped = _mm_packus_epi16(clamped, clamped);
*(uint32_t*)dst = _mm_cvtsi128_si32(clamped);
#else
for (int i = 0; i < 4; i++)
{
@ -1110,14 +1094,12 @@ static inline void sw_float_from_unorm8_simd(float dst[4], const uint8_t src[4])
float32x4_t floats = vcvtq_f32_u32(ints);
floats = vmulq_n_f32(floats, 1.0f/255.0f);
vst1q_f32(dst, floats);
#elif defined(SW_HAS_SSE41)
__m128i bytes = _mm_cvtsi32_si128(*(const uint32_t*)src);
__m128i ints = _mm_cvtepu8_epi32(bytes);
__m128 floats = _mm_cvtepi32_ps(ints);
floats = _mm_mul_ps(floats, _mm_set1_ps(1.0f/255.0f));
_mm_storeu_ps(dst, floats);
#elif defined(SW_HAS_SSE2)
__m128i bytes = _mm_cvtsi32_si128(*(const uint32_t*)src);
bytes = _mm_unpacklo_epi8(bytes, _mm_setzero_si128());
@ -1125,7 +1107,6 @@ static inline void sw_float_from_unorm8_simd(float dst[4], const uint8_t src[4])
__m128 floats = _mm_cvtepi32_ps(ints);
floats = _mm_mul_ps(floats, _mm_set1_ps(1.0f/255.0f));
_mm_storeu_ps(dst, floats);
#else
dst[0] = (float)src[0]/255.0f;
dst[1] = (float)src[1]/255.0f;
@ -1188,7 +1169,7 @@ static inline sw_half_t sw_half_from_float(float i)
}
// Framebuffer management functions
//-------------------------------------------------------------------------------------------
static inline bool sw_framebuffer_load(int w, int h)
{
int size = w*h;
@ -1731,9 +1712,10 @@ DEFINE_FRAMEBUFFER_BLIT_BEGIN(R8G8B8A8, uint8_t)
dst += 4;
}
DEFINE_FRAMEBUFFER_BLIT_END()
//-------------------------------------------------------------------------------------------
// Pixel format management functions
//-------------------------------------------------------------------------------------------
static inline int sw_get_pixel_format(SWformat format, SWtype type)
{
int channels = 0;
@ -1920,9 +1902,10 @@ static inline void sw_get_pixel(uint8_t *color, const void *pixels, uint32_t off
}
}
}
//-------------------------------------------------------------------------------------------
// Texture sampling functionality
//-------------------------------------------------------------------------------------------
static inline void sw_texture_fetch(float* color, const sw_texture_t* tex, int x, int y)
{
sw_float_from_unorm8_simd(color, &tex->pixels[4*(y*tex->width + x)]);
@ -2016,9 +1999,10 @@ static inline void sw_texture_sample(float *color, const sw_texture_t *tex, floa
default: break;
}
}
//-------------------------------------------------------------------------------------------
// Color Blending functionality
// Color blending functionality
//-------------------------------------------------------------------------------------------
static inline void sw_factor_zero(float *SW_RESTRICT factor, const float *SW_RESTRICT src, const float *SW_RESTRICT dst)
{
factor[0] = factor[1] = factor[2] = factor[3] = 0.0f;
@ -2091,17 +2075,19 @@ static inline void sw_blend_colors(float *SW_RESTRICT dst/*[4]*/, const float *S
dst[2] = srcFactor[2]*src[2] + dstFactor[2]*dst[2];
dst[3] = srcFactor[3]*src[3] + dstFactor[3]*dst[3];
}
//-------------------------------------------------------------------------------------------
// Projection helper functions
//-------------------------------------------------------------------------------------------
static inline void sw_project_ndc_to_screen(float screen[2], const float ndc[4])
{
screen[0] = RLSW.vpCenter[0] + ndc[0]*RLSW.vpHalfSize[0];
screen[1] = RLSW.vpCenter[1] - ndc[1]*RLSW.vpHalfSize[1];
}
//-------------------------------------------------------------------------------------------
// Polygon Clipping management
// Polygon clipping management
//-------------------------------------------------------------------------------------------
#define DEFINE_CLIP_FUNC(name, FUNC_IS_INSIDE, FUNC_COMPUTE_T) \
static inline int sw_clip_##name( \
sw_vertex_t output[SW_MAX_CLIPPED_POLYGON_VERTICES], \
@ -2133,9 +2119,10 @@ static inline int sw_clip_##name(
\
return outputCount; \
}
//-------------------------------------------------------------------------------------------
// Frustum cliping functions
//-------------------------------------------------------------------------------------------
#define IS_INSIDE_PLANE_W(h) ((h)[3] >= SW_CLIP_EPSILON)
#define IS_INSIDE_PLANE_X_POS(h) ((h)[0] <= (h)[3])
#define IS_INSIDE_PLANE_X_NEG(h) (-(h)[0] <= (h)[3])
@ -2159,9 +2146,10 @@ DEFINE_CLIP_FUNC(y_pos, IS_INSIDE_PLANE_Y_POS, COMPUTE_T_PLANE_Y_POS)
DEFINE_CLIP_FUNC(y_neg, IS_INSIDE_PLANE_Y_NEG, COMPUTE_T_PLANE_Y_NEG)
DEFINE_CLIP_FUNC(z_pos, IS_INSIDE_PLANE_Z_POS, COMPUTE_T_PLANE_Z_POS)
DEFINE_CLIP_FUNC(z_neg, IS_INSIDE_PLANE_Z_NEG, COMPUTE_T_PLANE_Z_NEG)
//-------------------------------------------------------------------------------------------
// Scissor clip functions
//-------------------------------------------------------------------------------------------
#define COMPUTE_T_SCISSOR_X_MIN(hPrev, hCurr) (((RLSW.scClipMin[0])*(hPrev)[3] - (hPrev)[0])/(((hCurr)[0] - (RLSW.scClipMin[0])*(hCurr)[3]) - ((hPrev)[0] - (RLSW.scClipMin[0])*(hPrev)[3])))
#define COMPUTE_T_SCISSOR_X_MAX(hPrev, hCurr) (((RLSW.scClipMax[0])*(hPrev)[3] - (hPrev)[0])/(((hCurr)[0] - (RLSW.scClipMax[0])*(hCurr)[3]) - ((hPrev)[0] - (RLSW.scClipMax[0])*(hPrev)[3])))
#define COMPUTE_T_SCISSOR_Y_MIN(hPrev, hCurr) (((RLSW.scClipMin[1])*(hPrev)[3] - (hPrev)[1])/(((hCurr)[1] - (RLSW.scClipMin[1])*(hCurr)[3]) - ((hPrev)[1] - (RLSW.scClipMin[1])*(hPrev)[3])))
@ -2176,9 +2164,9 @@ DEFINE_CLIP_FUNC(scissor_x_min, IS_INSIDE_SCISSOR_X_MIN, COMPUTE_T_SCISSOR_X_MIN
DEFINE_CLIP_FUNC(scissor_x_max, IS_INSIDE_SCISSOR_X_MAX, COMPUTE_T_SCISSOR_X_MAX)
DEFINE_CLIP_FUNC(scissor_y_min, IS_INSIDE_SCISSOR_Y_MIN, COMPUTE_T_SCISSOR_Y_MIN)
DEFINE_CLIP_FUNC(scissor_y_max, IS_INSIDE_SCISSOR_Y_MAX, COMPUTE_T_SCISSOR_Y_MAX)
//-------------------------------------------------------------------------------------------
// Main clip function
// Main polygon clip function
static inline bool sw_polygon_clip(sw_vertex_t polygon[SW_MAX_CLIPPED_POLYGON_VERTICES], int *vertexCounter)
{
static sw_vertex_t tmp[SW_MAX_CLIPPED_POLYGON_VERTICES];
@ -2218,7 +2206,7 @@ static inline bool sw_polygon_clip(sw_vertex_t polygon[SW_MAX_CLIPPED_POLYGON_VE
}
// Triangle rendering logic
//-------------------------------------------------------------------------------------------
static inline bool sw_triangle_face_culling(void)
{
// NOTE: Face culling is done before clipping to avoid unnecessary computations.
@ -2556,9 +2544,10 @@ static inline void sw_triangle_render(void)
#undef TRIANGLE_RASTER
}
//-------------------------------------------------------------------------------------------
// Quad rendering logic
//-------------------------------------------------------------------------------------------
static inline bool sw_quad_face_culling(void)
{
// NOTE: Face culling is done before clipping to avoid unnecessary computations.
@ -2930,9 +2919,10 @@ static inline void sw_quad_render(void)
#undef TRIANGLE_RASTER
}
//-------------------------------------------------------------------------------------------
// Line rendering logic
//-------------------------------------------------------------------------------------------
static inline bool sw_line_clip_coord(float q, float p, float *t0, float *t1)
{
if (fabsf(p) < SW_CLIP_EPSILON)
@ -3243,9 +3233,10 @@ static inline void sw_line_render(sw_vertex_t *vertices)
else sw_line_raster(&vertices[0], &vertices[1]);
}
}
//-------------------------------------------------------------------------------------------
// Point rendering logic
//-------------------------------------------------------------------------------------------
static inline bool sw_point_clip_and_project(sw_vertex_t *v)
{
if (v->homogeneous[3] != 1.0f)
@ -3409,9 +3400,10 @@ static inline void sw_point_render(sw_vertex_t *v)
else sw_point_raster(v->screen[0], v->screen[1], v->homogeneous[2], v->color);
}
}
//-------------------------------------------------------------------------------------------
// Polygon modes mendering logic
//-------------------------------------------------------------------------------------------
static inline void sw_poly_point_render(void)
{
for (int i = 0; i < RLSW.vertexCounter; i++) sw_point_render(&RLSW.vertexBuffer[i]);
@ -3546,6 +3538,7 @@ static inline bool sw_is_blend_dst_factor_valid(int blend)
return result;
}
//-------------------------------------------------------------------------------------------
//----------------------------------------------------------------------------------
// Module Functions Definition

View File

@ -49,8 +49,6 @@
#define CloseWindow CloseWindowWin32
#define Rectangle RectangleWin32
#define ShowCursor ShowCursorWin32
#define LoadImageA LoadImageAWin32
#define LoadImageW LoadImageWin32
#define DrawTextA DrawTextAWin32
#define DrawTextW DrawTextWin32
#define DrawTextExA DrawTextExAWin32
@ -63,8 +61,6 @@
#undef Rectangle // raylib symbol collision
#undef ShowCursor // raylib symbol collision
#undef LoadImage // raylib symbol collision
#undef LoadImageA
#undef LoadImageW
#undef DrawText // raylib symbol collision
#undef DrawTextA
#undef DrawTextW
@ -1529,7 +1525,7 @@ int InitPlatform(void)
// Load user-provided icon if available
// NOTE: raylib resource file defaults to GLFW_ICON id, so looking for same identifier
windowClass.hIcon = LoadImageW(hInstance, L"GLFW_ICON", IMAGE_ICON, 0, 0, LR_DEFAULTSIZE | LR_SHARED);
if (!windowClass.hIcon) windowClass.hIcon = LoadImageW(NULL, IDI_APPLICATION, IMAGE_ICON, 0, 0, LR_DEFAULTSIZE | LR_SHARED);
if (!windowClass.hIcon) windowClass.hIcon = LoadImageW(NULL, (LPCWSTR)IDI_APPLICATION, IMAGE_ICON, 0, 0, LR_DEFAULTSIZE | LR_SHARED);
// Register window class
result = (int)RegisterClassExW(&windowClass);