/********************************************************************************************** * * rcore - Basic functions to manage windows, OpenGL context and input on multiple platforms * * PLATFORMS SUPPORTED: * - PLATFORM_DESKTOP: Windows (Win32, Win64) * - PLATFORM_DESKTOP: Linux (X11 desktop mode) * - PLATFORM_DESKTOP: FreeBSD, OpenBSD, NetBSD, DragonFly (X11 desktop) * - PLATFORM_DESKTOP: OSX/macOS * - PLATFORM_ANDROID: Android (ARM, ARM64) * - PLATFORM_DRM: Linux native mode, including Raspberry Pi 4 with V3D fkms driver * - PLATFORM_WEB: HTML5 with WebAssembly * * CONFIGURATION: * #define PLATFORM_DESKTOP * Windowing and input system configured for desktop platforms: * Windows, Linux, OSX, FreeBSD, OpenBSD, NetBSD, DragonFly * * #define PLATFORM_ANDROID * Windowing and input system configured for Android device, app activity managed internally in this module. * NOTE: OpenGL ES 2.0 is required and graphic device is managed by EGL * * #define PLATFORM_DRM * Windowing and input system configured for DRM native mode (RPI4 and other devices) * graphic device is managed by EGL and inputs are processed is raw mode, reading from /dev/input/ * * #define PLATFORM_WEB * Windowing and input system configured for HTML5 (run on browser), code converted from C to asm.js * using emscripten compiler. OpenGL ES 2.0 required for direct translation to WebGL equivalent code. * * #define SUPPORT_DEFAULT_FONT (default) * Default font is loaded on window initialization to be available for the user to render simple text. * NOTE: If enabled, uses external module functions to load default raylib font (module: text) * * #define SUPPORT_CAMERA_SYSTEM * Camera module is included (rcamera.h) and multiple predefined cameras are available: * free, 1st/3rd person, orbital, custom * * #define SUPPORT_GESTURES_SYSTEM * Gestures module is included (rgestures.h) to support gestures detection: tap, hold, swipe, drag * * #define SUPPORT_MOUSE_GESTURES * Mouse gestures are directly mapped like touches and processed by gestures system. * * #define SUPPORT_SSH_KEYBOARD_RPI (Raspberry Pi only) * Reconfigure standard input to receive key inputs, works with SSH connection. * WARNING: Reconfiguring standard input could lead to undesired effects, like breaking other * running processes orblocking the device if not restored properly. Use with care. * * #define SUPPORT_BUSY_WAIT_LOOP * Use busy wait loop for timing sync, if not defined, a high-resolution timer is setup and used * * #define SUPPORT_PARTIALBUSY_WAIT_LOOP * Use a partial-busy wait loop, in this case frame sleeps for most of the time and runs a busy-wait-loop at the end * * #define SUPPORT_EVENTS_WAITING * Wait for events passively (sleeping while no events) instead of polling them actively every frame * * #define SUPPORT_SCREEN_CAPTURE * Allow automatic screen capture of current screen pressing F12, defined in KeyCallback() * * #define SUPPORT_GIF_RECORDING * Allow automatic gif recording of current screen pressing CTRL+F12, defined in KeyCallback() * * #define SUPPORT_COMPRESSION_API * Support CompressData() and DecompressData() functions, those functions use zlib implementation * provided by stb_image and stb_image_write libraries, so, those libraries must be enabled on textures module * for linkage * * #define SUPPORT_EVENTS_AUTOMATION * Support automatic generated events, loading and recording of those events when required * * DEPENDENCIES: * rglfw - Manage graphic device, OpenGL context and inputs on PLATFORM_DESKTOP (Windows, Linux, OSX, FreeBSD...) * raymath - 3D math functionality (Vector2, Vector3, Matrix, Quaternion) * camera - Multiple 3D camera modes (free, orbital, 1st person, 3rd person) * gestures - Gestures system for touch-ready devices (or simulated from mouse inputs) * * * LICENSE: zlib/libpng * * Copyright (c) 2013-2023 Ramon Santamaria (@raysan5) * * This software is provided "as-is", without any express or implied warranty. In no event * will the authors be held liable for any damages arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, including commercial * applications, and to alter it and redistribute it freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not claim that you * wrote the original software. If you use this software in a product, an acknowledgment * in the product documentation would be appreciated but is not required. * * 2. Altered source versions must be plainly marked as such, and must not be misrepresented * as being the original software. * * 3. This notice may not be removed or altered from any source distribution. * **********************************************************************************************/ #include "raylib.h" // Declares module functions // Check if config flags have been externally provided on compilation line #if !defined(EXTERNAL_CONFIG_FLAGS) #include "config.h" // Defines module configuration flags #endif #include "rcore.h" #define RLGL_IMPLEMENTATION #include "rlgl.h" // OpenGL abstraction layer to OpenGL 1.1, 3.3+ or ES2 #include "raymath.h" // Vector3, Quaternion and Matrix functionality #if defined(SUPPORT_GESTURES_SYSTEM) #define RGESTURES_IMPLEMENTATION #include "rgestures.h" // Gestures detection functionality #endif #if defined(SUPPORT_CAMERA_SYSTEM) #define RCAMERA_IMPLEMENTATION #include "rcamera.h" // Camera system functionality #endif #if defined(SUPPORT_GIF_RECORDING) #define MSF_GIF_MALLOC(contextPointer, newSize) RL_MALLOC(newSize) #define MSF_GIF_REALLOC(contextPointer, oldMemory, oldSize, newSize) RL_REALLOC(oldMemory, newSize) #define MSF_GIF_FREE(contextPointer, oldMemory, oldSize) RL_FREE(oldMemory) #define MSF_GIF_IMPL #include "external/msf_gif.h" // GIF recording functionality #endif #if defined(SUPPORT_COMPRESSION_API) #define SINFL_IMPLEMENTATION #define SINFL_NO_SIMD #include "external/sinfl.h" // Deflate (RFC 1951) decompressor #define SDEFL_IMPLEMENTATION #include "external/sdefl.h" // Deflate (RFC 1951) compressor #endif #if defined(__linux__) && !defined(_GNU_SOURCE) #define _GNU_SOURCE #endif // Platform specific defines to handle GetApplicationDirectory() #if defined (PLATFORM_DESKTOP) #if defined(_WIN32) #ifndef MAX_PATH #define MAX_PATH 1025 #endif __declspec(dllimport) unsigned long __stdcall GetModuleFileNameA(void *hModule, void *lpFilename, unsigned long nSize); __declspec(dllimport) unsigned long __stdcall GetModuleFileNameW(void *hModule, void *lpFilename, unsigned long nSize); __declspec(dllimport) int __stdcall WideCharToMultiByte(unsigned int cp, unsigned long flags, void *widestr, int cchwide, void *str, int cbmb, void *defchar, int *used_default); #elif defined(__linux__) #include #elif defined(__APPLE__) #include #include #endif // OSs #endif // PLATFORM_DESKTOP #define _CRT_INTERNAL_NONSTDC_NAMES 1 #include // Required for: stat(), S_ISREG [Used in GetFileModTime(), IsFilePath()] #if !defined(S_ISREG) && defined(S_IFMT) && defined(S_IFREG) #define S_ISREG(m) (((m) & S_IFMT) == S_IFREG) #endif #if defined(PLATFORM_DESKTOP) && defined(_WIN32) && (defined(_MSC_VER) || defined(__TINYC__)) #define DIRENT_MALLOC RL_MALLOC #define DIRENT_FREE RL_FREE #include "external/dirent.h" // Required for: DIR, opendir(), closedir() [Used in LoadDirectoryFiles()] #else #include // Required for: DIR, opendir(), closedir() [Used in LoadDirectoryFiles()] #endif #if defined(_WIN32) #include // Required for: _getch(), _chdir() #define GETCWD _getcwd // NOTE: MSDN recommends not to use getcwd(), chdir() #define CHDIR _chdir #include // Required for: _access() [Used in FileExists()] #else #include // Required for: getch(), chdir() (POSIX), access() #define GETCWD getcwd #define CHDIR chdir #endif //---------------------------------------------------------------------------------- // Global Variables Definition //---------------------------------------------------------------------------------- RLAPI const char *raylib_version = RAYLIB_VERSION; // raylib version exported symbol, required for some bindings CoreData CORE = { 0 }; // Global CORE state context #if defined(SUPPORT_SCREEN_CAPTURE) static int screenshotCounter = 0; // Screenshots counter #endif #if defined(SUPPORT_GIF_RECORDING) int gifFrameCounter = 0; // GIF frames counter bool gifRecording = false; // GIF recording state MsfGifState gifState = { 0 }; // MSGIF context state #endif #if defined(SUPPORT_EVENTS_AUTOMATION) #define MAX_CODE_AUTOMATION_EVENTS 16384 typedef enum AutomationEventType { EVENT_NONE = 0, // Input events INPUT_KEY_UP, // param[0]: key INPUT_KEY_DOWN, // param[0]: key INPUT_KEY_PRESSED, // param[0]: key INPUT_KEY_RELEASED, // param[0]: key INPUT_MOUSE_BUTTON_UP, // param[0]: button INPUT_MOUSE_BUTTON_DOWN, // param[0]: button INPUT_MOUSE_POSITION, // param[0]: x, param[1]: y INPUT_MOUSE_WHEEL_MOTION, // param[0]: x delta, param[1]: y delta INPUT_GAMEPAD_CONNECT, // param[0]: gamepad INPUT_GAMEPAD_DISCONNECT, // param[0]: gamepad INPUT_GAMEPAD_BUTTON_UP, // param[0]: button INPUT_GAMEPAD_BUTTON_DOWN, // param[0]: button INPUT_GAMEPAD_AXIS_MOTION, // param[0]: axis, param[1]: delta INPUT_TOUCH_UP, // param[0]: id INPUT_TOUCH_DOWN, // param[0]: id INPUT_TOUCH_POSITION, // param[0]: x, param[1]: y INPUT_GESTURE, // param[0]: gesture // Window events WINDOW_CLOSE, // no params WINDOW_MAXIMIZE, // no params WINDOW_MINIMIZE, // no params WINDOW_RESIZE, // param[0]: width, param[1]: height // Custom events ACTION_TAKE_SCREENSHOT, ACTION_SETTARGETFPS } AutomationEventType; // Event type // Used to enable events flags typedef enum { EVENT_INPUT_KEYBOARD = 0, EVENT_INPUT_MOUSE = 1, EVENT_INPUT_GAMEPAD = 2, EVENT_INPUT_TOUCH = 4, EVENT_INPUT_GESTURE = 8, EVENT_WINDOW = 16, EVENT_CUSTOM = 32 } EventType; static const char *autoEventTypeName[] = { "EVENT_NONE", "INPUT_KEY_UP", "INPUT_KEY_DOWN", "INPUT_KEY_PRESSED", "INPUT_KEY_RELEASED", "INPUT_MOUSE_BUTTON_UP", "INPUT_MOUSE_BUTTON_DOWN", "INPUT_MOUSE_POSITION", "INPUT_MOUSE_WHEEL_MOTION", "INPUT_GAMEPAD_CONNECT", "INPUT_GAMEPAD_DISCONNECT", "INPUT_GAMEPAD_BUTTON_UP", "INPUT_GAMEPAD_BUTTON_DOWN", "INPUT_GAMEPAD_AXIS_MOTION", "INPUT_TOUCH_UP", "INPUT_TOUCH_DOWN", "INPUT_TOUCH_POSITION", "INPUT_GESTURE", "WINDOW_CLOSE", "WINDOW_MAXIMIZE", "WINDOW_MINIMIZE", "WINDOW_RESIZE", "ACTION_TAKE_SCREENSHOT", "ACTION_SETTARGETFPS" }; // Automation event (24 bytes) typedef struct AutomationEvent { unsigned int frame; // Event frame unsigned int type; // Event type (AutomationEventType) int params[4]; // Event parameters (if required) } AutomationEvent; static AutomationEvent *events = NULL; // Events array static unsigned int eventCount = 0; // Events count static bool eventsPlaying = false; // Play events static bool eventsRecording = false; // Record events //static short eventsEnabled = 0b0000001111111111; // Events enabled for checking #endif //----------------------------------------------------------------------------------- //---------------------------------------------------------------------------------- // Module specific Functions Declaration //---------------------------------------------------------------------------------- #if defined(SUPPORT_MODULE_RTEXT) && defined(SUPPORT_DEFAULT_FONT) extern void LoadFontDefault(void); // [Module: text] Loads default font on InitWindow() extern void UnloadFontDefault(void); // [Module: text] Unloads default font from GPU memory #endif static void InitTimer(void); // Initialize timer (hi-resolution if available) static void SetupFramebuffer(int width, int height); // Setup main framebuffer static void SetupViewport(int width, int height); // Set viewport for a provided width and height static void ScanDirectoryFiles(const char *basePath, FilePathList *list, const char *filter); // Scan all files and directories in a base path static void ScanDirectoryFilesRecursively(const char *basePath, FilePathList *list, const char *filter); // Scan all files and directories recursively from a base path #if defined(PLATFORM_DRM) static void InitKeyboard(void); // Initialize raw keyboard system static void RestoreKeyboard(void); // Restore keyboard system #if defined(SUPPORT_SSH_KEYBOARD_RPI) static void ProcessKeyboard(void); // Process keyboard events #endif static void InitEvdevInput(void); // Initialize evdev inputs static void ConfigureEvdevDevice(char *device); // Identifies a input device and configures it for use if appropriate static void PollKeyboardEvents(void); // Process evdev keyboard events. static void *EventThread(void *arg); // Input device events reading thread static void InitGamepad(void); // Initialize raw gamepad input static void *GamepadThread(void *arg); // Mouse reading thread static int FindMatchingConnectorMode(const drmModeConnector *connector, const drmModeModeInfo *mode); // Search matching DRM mode in connector's mode list static int FindExactConnectorMode(const drmModeConnector *connector, uint width, uint height, uint fps, bool allowInterlaced); // Search exactly matching DRM connector mode in connector's list static int FindNearestConnectorMode(const drmModeConnector *connector, uint width, uint height, uint fps, bool allowInterlaced); // Search the nearest matching DRM connector mode in connector's list #endif // PLATFORM_DRM #if defined(SUPPORT_EVENTS_AUTOMATION) static void LoadAutomationEvents(const char *fileName); // Load automation events from file static void ExportAutomationEvents(const char *fileName); // Export recorded automation events into a file static void RecordAutomationEvent(unsigned int frame); // Record frame events (to internal events array) static void PlayAutomationEvent(unsigned int frame); // Play frame events (from internal events array) #endif #if defined(_WIN32) // NOTE: We declare Sleep() function symbol to avoid including windows.h (kernel32.lib linkage required) void __stdcall Sleep(unsigned long msTimeout); // Required for: WaitTime() #endif #if !defined(SUPPORT_MODULE_RTEXT) const char *TextFormat(const char *text, ...); // Formatting of text with variables to 'embed' #endif // !SUPPORT_MODULE_RTEXT // Include submodules #if defined(PLATFORM_DESKTOP) #include "rcore_desktop.c" #elif defined(PLATFORM_WEB) #include "rcore_web.c" #elif defined(PLATFOM_DRM) #include "rcore_drm.c" #elif defined(PLATFOM_ANDROID) #include "rcore_android.c" #else // Software rendering backend, user needs to provide buffer ;) #endif //---------------------------------------------------------------------------------- // Module Functions Definition - Window and OpenGL Context Functions //---------------------------------------------------------------------------------- // Check if window has been initialized successfully bool IsWindowReady(void) { return CORE.Window.ready; } // Check if window is currently fullscreen bool IsWindowFullscreen(void) { return CORE.Window.fullscreen; } // Check if one specific window flag is enabled bool IsWindowState(unsigned int flag) { return ((CORE.Window.flags & flag) > 0); } // Get current screen width int GetScreenWidth(void) { return CORE.Window.screen.width; } // Get current screen height int GetScreenHeight(void) { return CORE.Window.screen.height; } // Get current render width which is equal to screen width * dpi scale int GetRenderWidth(void) { return CORE.Window.render.width; } // Get current screen height which is equal to screen height * dpi scale int GetRenderHeight(void) { return CORE.Window.render.height; } // Enable waiting for events on EndDrawing(), no automatic event polling void EnableEventWaiting(void) { CORE.Window.eventWaiting = true; } // Disable waiting for events on EndDrawing(), automatic events polling void DisableEventWaiting(void) { CORE.Window.eventWaiting = false; } // Check if cursor is not visible bool IsCursorHidden(void) { return CORE.Input.Mouse.cursorHidden; } // Check if cursor is on the current screen. bool IsCursorOnScreen(void) { return CORE.Input.Mouse.cursorOnScreen; } // Set background color (framebuffer clear color) void ClearBackground(Color color) { rlClearColor(color.r, color.g, color.b, color.a); // Set clear color rlClearScreenBuffers(); // Clear current framebuffers } // Setup canvas (framebuffer) to start drawing void BeginDrawing(void) { // WARNING: Previously to BeginDrawing() other render textures drawing could happen, // consequently the measure for update vs draw is not accurate (only the total frame time is accurate) CORE.Time.current = GetTime(); // Number of elapsed seconds since InitTimer() CORE.Time.update = CORE.Time.current - CORE.Time.previous; CORE.Time.previous = CORE.Time.current; rlLoadIdentity(); // Reset current matrix (modelview) rlMultMatrixf(MatrixToFloat(CORE.Window.screenScale)); // Apply screen scaling //rlTranslatef(0.375, 0.375, 0); // HACK to have 2D pixel-perfect drawing on OpenGL 1.1 // NOTE: Not required with OpenGL 3.3+ } // End canvas drawing and swap buffers (double buffering) void EndDrawing(void) { rlDrawRenderBatchActive(); // Update and draw internal render batch #if defined(SUPPORT_GIF_RECORDING) // Draw record indicator if (gifRecording) { #define GIF_RECORD_FRAMERATE 10 gifFrameCounter++; // NOTE: We record one gif frame every 10 game frames if ((gifFrameCounter%GIF_RECORD_FRAMERATE) == 0) { // Get image data for the current frame (from backbuffer) // NOTE: This process is quite slow... :( Vector2 scale = GetWindowScaleDPI(); unsigned char *screenData = rlReadScreenPixels((int)((float)CORE.Window.render.width*scale.x), (int)((float)CORE.Window.render.height*scale.y)); msf_gif_frame(&gifState, screenData, 10, 16, (int)((float)CORE.Window.render.width*scale.x)*4); RL_FREE(screenData); // Free image data } #if defined(SUPPORT_MODULE_RSHAPES) && defined(SUPPORT_MODULE_RTEXT) if (((gifFrameCounter/15)%2) == 1) { DrawCircle(30, CORE.Window.screen.height - 20, 10, MAROON); // WARNING: Module required: rshapes DrawText("GIF RECORDING", 50, CORE.Window.screen.height - 25, 10, RED); // WARNING: Module required: rtext } #endif rlDrawRenderBatchActive(); // Update and draw internal render batch } #endif #if defined(SUPPORT_EVENTS_AUTOMATION) // Draw record/play indicator if (eventsRecording) { gifFrameCounter++; if (((gifFrameCounter/15)%2) == 1) { DrawCircle(30, CORE.Window.screen.height - 20, 10, MAROON); DrawText("EVENTS RECORDING", 50, CORE.Window.screen.height - 25, 10, RED); } rlDrawRenderBatchActive(); // Update and draw internal render batch } else if (eventsPlaying) { gifFrameCounter++; if (((gifFrameCounter/15)%2) == 1) { DrawCircle(30, CORE.Window.screen.height - 20, 10, LIME); DrawText("EVENTS PLAYING", 50, CORE.Window.screen.height - 25, 10, GREEN); } rlDrawRenderBatchActive(); // Update and draw internal render batch } #endif #if !defined(SUPPORT_CUSTOM_FRAME_CONTROL) SwapScreenBuffer(); // Copy back buffer to front buffer (screen) // Frame time control system CORE.Time.current = GetTime(); CORE.Time.draw = CORE.Time.current - CORE.Time.previous; CORE.Time.previous = CORE.Time.current; CORE.Time.frame = CORE.Time.update + CORE.Time.draw; // Wait for some milliseconds... if (CORE.Time.frame < CORE.Time.target) { WaitTime(CORE.Time.target - CORE.Time.frame); CORE.Time.current = GetTime(); double waitTime = CORE.Time.current - CORE.Time.previous; CORE.Time.previous = CORE.Time.current; CORE.Time.frame += waitTime; // Total frame time: update + draw + wait } PollInputEvents(); // Poll user events (before next frame update) #endif #if defined(SUPPORT_EVENTS_AUTOMATION) // Events recording and playing logic if (eventsRecording) RecordAutomationEvent(CORE.Time.frameCounter); else if (eventsPlaying) { // TODO: When should we play? After/before/replace PollInputEvents()? if (CORE.Time.frameCounter >= eventCount) eventsPlaying = false; PlayAutomationEvent(CORE.Time.frameCounter); } #endif CORE.Time.frameCounter++; } // Initialize 2D mode with custom camera (2D) void BeginMode2D(Camera2D camera) { rlDrawRenderBatchActive(); // Update and draw internal render batch rlLoadIdentity(); // Reset current matrix (modelview) // Apply 2d camera transformation to modelview rlMultMatrixf(MatrixToFloat(GetCameraMatrix2D(camera))); // Apply screen scaling if required rlMultMatrixf(MatrixToFloat(CORE.Window.screenScale)); } // Ends 2D mode with custom camera void EndMode2D(void) { rlDrawRenderBatchActive(); // Update and draw internal render batch rlLoadIdentity(); // Reset current matrix (modelview) rlMultMatrixf(MatrixToFloat(CORE.Window.screenScale)); // Apply screen scaling if required } // Initializes 3D mode with custom camera (3D) void BeginMode3D(Camera camera) { rlDrawRenderBatchActive(); // Update and draw internal render batch rlMatrixMode(RL_PROJECTION); // Switch to projection matrix rlPushMatrix(); // Save previous matrix, which contains the settings for the 2d ortho projection rlLoadIdentity(); // Reset current matrix (projection) float aspect = (float)CORE.Window.currentFbo.width/(float)CORE.Window.currentFbo.height; // NOTE: zNear and zFar values are important when computing depth buffer values if (camera.projection == CAMERA_PERSPECTIVE) { // Setup perspective projection double top = RL_CULL_DISTANCE_NEAR*tan(camera.fovy*0.5*DEG2RAD); double right = top*aspect; rlFrustum(-right, right, -top, top, RL_CULL_DISTANCE_NEAR, RL_CULL_DISTANCE_FAR); } else if (camera.projection == CAMERA_ORTHOGRAPHIC) { // Setup orthographic projection double top = camera.fovy/2.0; double right = top*aspect; rlOrtho(-right, right, -top,top, RL_CULL_DISTANCE_NEAR, RL_CULL_DISTANCE_FAR); } rlMatrixMode(RL_MODELVIEW); // Switch back to modelview matrix rlLoadIdentity(); // Reset current matrix (modelview) // Setup Camera view Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up); rlMultMatrixf(MatrixToFloat(matView)); // Multiply modelview matrix by view matrix (camera) rlEnableDepthTest(); // Enable DEPTH_TEST for 3D } // Ends 3D mode and returns to default 2D orthographic mode void EndMode3D(void) { rlDrawRenderBatchActive(); // Update and draw internal render batch rlMatrixMode(RL_PROJECTION); // Switch to projection matrix rlPopMatrix(); // Restore previous matrix (projection) from matrix stack rlMatrixMode(RL_MODELVIEW); // Switch back to modelview matrix rlLoadIdentity(); // Reset current matrix (modelview) rlMultMatrixf(MatrixToFloat(CORE.Window.screenScale)); // Apply screen scaling if required rlDisableDepthTest(); // Disable DEPTH_TEST for 2D } // Initializes render texture for drawing void BeginTextureMode(RenderTexture2D target) { rlDrawRenderBatchActive(); // Update and draw internal render batch rlEnableFramebuffer(target.id); // Enable render target // Set viewport and RLGL internal framebuffer size rlViewport(0, 0, target.texture.width, target.texture.height); rlSetFramebufferWidth(target.texture.width); rlSetFramebufferHeight(target.texture.height); rlMatrixMode(RL_PROJECTION); // Switch to projection matrix rlLoadIdentity(); // Reset current matrix (projection) // Set orthographic projection to current framebuffer size // NOTE: Configured top-left corner as (0, 0) rlOrtho(0, target.texture.width, target.texture.height, 0, 0.0f, 1.0f); rlMatrixMode(RL_MODELVIEW); // Switch back to modelview matrix rlLoadIdentity(); // Reset current matrix (modelview) //rlScalef(0.0f, -1.0f, 0.0f); // Flip Y-drawing (?) // Setup current width/height for proper aspect ratio // calculation when using BeginMode3D() CORE.Window.currentFbo.width = target.texture.width; CORE.Window.currentFbo.height = target.texture.height; } // Ends drawing to render texture void EndTextureMode(void) { rlDrawRenderBatchActive(); // Update and draw internal render batch rlDisableFramebuffer(); // Disable render target (fbo) // Set viewport to default framebuffer size SetupViewport(CORE.Window.render.width, CORE.Window.render.height); // Reset current fbo to screen size CORE.Window.currentFbo.width = CORE.Window.render.width; CORE.Window.currentFbo.height = CORE.Window.render.height; } // Begin custom shader mode void BeginShaderMode(Shader shader) { rlSetShader(shader.id, shader.locs); } // End custom shader mode (returns to default shader) void EndShaderMode(void) { rlSetShader(rlGetShaderIdDefault(), rlGetShaderLocsDefault()); } // Begin blending mode (alpha, additive, multiplied, subtract, custom) // NOTE: Blend modes supported are enumerated in BlendMode enum void BeginBlendMode(int mode) { rlSetBlendMode(mode); } // End blending mode (reset to default: alpha blending) void EndBlendMode(void) { rlSetBlendMode(BLEND_ALPHA); } // Begin scissor mode (define screen area for following drawing) // NOTE: Scissor rec refers to bottom-left corner, we change it to upper-left void BeginScissorMode(int x, int y, int width, int height) { rlDrawRenderBatchActive(); // Update and draw internal render batch rlEnableScissorTest(); #if defined(__APPLE__) Vector2 scale = GetWindowScaleDPI(); rlScissor((int)(x*scale.x), (int)(GetScreenHeight()*scale.y - (((y + height)*scale.y))), (int)(width*scale.x), (int)(height*scale.y)); #else if ((CORE.Window.flags & FLAG_WINDOW_HIGHDPI) > 0) { Vector2 scale = GetWindowScaleDPI(); rlScissor((int)(x*scale.x), (int)(CORE.Window.currentFbo.height - (y + height)*scale.y), (int)(width*scale.x), (int)(height*scale.y)); } else { rlScissor(x, CORE.Window.currentFbo.height - (y + height), width, height); } #endif } // End scissor mode void EndScissorMode(void) { rlDrawRenderBatchActive(); // Update and draw internal render batch rlDisableScissorTest(); } // Begin VR drawing configuration void BeginVrStereoMode(VrStereoConfig config) { rlEnableStereoRender(); // Set stereo render matrices rlSetMatrixProjectionStereo(config.projection[0], config.projection[1]); rlSetMatrixViewOffsetStereo(config.viewOffset[0], config.viewOffset[1]); } // End VR drawing process (and desktop mirror) void EndVrStereoMode(void) { rlDisableStereoRender(); } // Load VR stereo config for VR simulator device parameters VrStereoConfig LoadVrStereoConfig(VrDeviceInfo device) { VrStereoConfig config = { 0 }; if ((rlGetVersion() == RL_OPENGL_33) || (rlGetVersion() >= RL_OPENGL_ES_20)) { // Compute aspect ratio float aspect = ((float)device.hResolution*0.5f)/(float)device.vResolution; // Compute lens parameters float lensShift = (device.hScreenSize*0.25f - device.lensSeparationDistance*0.5f)/device.hScreenSize; config.leftLensCenter[0] = 0.25f + lensShift; config.leftLensCenter[1] = 0.5f; config.rightLensCenter[0] = 0.75f - lensShift; config.rightLensCenter[1] = 0.5f; config.leftScreenCenter[0] = 0.25f; config.leftScreenCenter[1] = 0.5f; config.rightScreenCenter[0] = 0.75f; config.rightScreenCenter[1] = 0.5f; // Compute distortion scale parameters // NOTE: To get lens max radius, lensShift must be normalized to [-1..1] float lensRadius = fabsf(-1.0f - 4.0f*lensShift); float lensRadiusSq = lensRadius*lensRadius; float distortionScale = device.lensDistortionValues[0] + device.lensDistortionValues[1]*lensRadiusSq + device.lensDistortionValues[2]*lensRadiusSq*lensRadiusSq + device.lensDistortionValues[3]*lensRadiusSq*lensRadiusSq*lensRadiusSq; float normScreenWidth = 0.5f; float normScreenHeight = 1.0f; config.scaleIn[0] = 2.0f/normScreenWidth; config.scaleIn[1] = 2.0f/normScreenHeight/aspect; config.scale[0] = normScreenWidth*0.5f/distortionScale; config.scale[1] = normScreenHeight*0.5f*aspect/distortionScale; // Fovy is normally computed with: 2*atan2f(device.vScreenSize, 2*device.eyeToScreenDistance) // ...but with lens distortion it is increased (see Oculus SDK Documentation) float fovy = 2.0f*atan2f(device.vScreenSize*0.5f*distortionScale, device.eyeToScreenDistance); // Really need distortionScale? // float fovy = 2.0f*(float)atan2f(device.vScreenSize*0.5f, device.eyeToScreenDistance); // Compute camera projection matrices float projOffset = 4.0f*lensShift; // Scaled to projection space coordinates [-1..1] Matrix proj = MatrixPerspective(fovy, aspect, RL_CULL_DISTANCE_NEAR, RL_CULL_DISTANCE_FAR); config.projection[0] = MatrixMultiply(proj, MatrixTranslate(projOffset, 0.0f, 0.0f)); config.projection[1] = MatrixMultiply(proj, MatrixTranslate(-projOffset, 0.0f, 0.0f)); // Compute camera transformation matrices // NOTE: Camera movement might seem more natural if we model the head. // Our axis of rotation is the base of our head, so we might want to add // some y (base of head to eye level) and -z (center of head to eye protrusion) to the camera positions. config.viewOffset[0] = MatrixTranslate(-device.interpupillaryDistance*0.5f, 0.075f, 0.045f); config.viewOffset[1] = MatrixTranslate(device.interpupillaryDistance*0.5f, 0.075f, 0.045f); // Compute eyes Viewports /* config.eyeViewportRight[0] = 0; config.eyeViewportRight[1] = 0; config.eyeViewportRight[2] = device.hResolution/2; config.eyeViewportRight[3] = device.vResolution; config.eyeViewportLeft[0] = device.hResolution/2; config.eyeViewportLeft[1] = 0; config.eyeViewportLeft[2] = device.hResolution/2; config.eyeViewportLeft[3] = device.vResolution; */ } else TRACELOG(LOG_WARNING, "RLGL: VR Simulator not supported on OpenGL 1.1"); return config; } // Unload VR stereo config properties void UnloadVrStereoConfig(VrStereoConfig config) { //... } // Load shader from files and bind default locations // NOTE: If shader string is NULL, using default vertex/fragment shaders Shader LoadShader(const char *vsFileName, const char *fsFileName) { Shader shader = { 0 }; char *vShaderStr = NULL; char *fShaderStr = NULL; if (vsFileName != NULL) vShaderStr = LoadFileText(vsFileName); if (fsFileName != NULL) fShaderStr = LoadFileText(fsFileName); shader = LoadShaderFromMemory(vShaderStr, fShaderStr); UnloadFileText(vShaderStr); UnloadFileText(fShaderStr); return shader; } // Load shader from code strings and bind default locations Shader LoadShaderFromMemory(const char *vsCode, const char *fsCode) { Shader shader = { 0 }; shader.id = rlLoadShaderCode(vsCode, fsCode); // After shader loading, we TRY to set default location names if (shader.id > 0) { // Default shader attribute locations have been binded before linking: // vertex position location = 0 // vertex texcoord location = 1 // vertex normal location = 2 // vertex color location = 3 // vertex tangent location = 4 // vertex texcoord2 location = 5 // NOTE: If any location is not found, loc point becomes -1 shader.locs = (int *)RL_CALLOC(RL_MAX_SHADER_LOCATIONS, sizeof(int)); // All locations reset to -1 (no location) for (int i = 0; i < RL_MAX_SHADER_LOCATIONS; i++) shader.locs[i] = -1; // Get handles to GLSL input attribute locations shader.locs[SHADER_LOC_VERTEX_POSITION] = rlGetLocationAttrib(shader.id, RL_DEFAULT_SHADER_ATTRIB_NAME_POSITION); shader.locs[SHADER_LOC_VERTEX_TEXCOORD01] = rlGetLocationAttrib(shader.id, RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD); shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] = rlGetLocationAttrib(shader.id, RL_DEFAULT_SHADER_ATTRIB_NAME_TEXCOORD2); shader.locs[SHADER_LOC_VERTEX_NORMAL] = rlGetLocationAttrib(shader.id, RL_DEFAULT_SHADER_ATTRIB_NAME_NORMAL); shader.locs[SHADER_LOC_VERTEX_TANGENT] = rlGetLocationAttrib(shader.id, RL_DEFAULT_SHADER_ATTRIB_NAME_TANGENT); shader.locs[SHADER_LOC_VERTEX_COLOR] = rlGetLocationAttrib(shader.id, RL_DEFAULT_SHADER_ATTRIB_NAME_COLOR); // Get handles to GLSL uniform locations (vertex shader) shader.locs[SHADER_LOC_MATRIX_MVP] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_UNIFORM_NAME_MVP); shader.locs[SHADER_LOC_MATRIX_VIEW] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_UNIFORM_NAME_VIEW); shader.locs[SHADER_LOC_MATRIX_PROJECTION] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_UNIFORM_NAME_PROJECTION); shader.locs[SHADER_LOC_MATRIX_MODEL] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_UNIFORM_NAME_MODEL); shader.locs[SHADER_LOC_MATRIX_NORMAL] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_UNIFORM_NAME_NORMAL); // Get handles to GLSL uniform locations (fragment shader) shader.locs[SHADER_LOC_COLOR_DIFFUSE] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_UNIFORM_NAME_COLOR); shader.locs[SHADER_LOC_MAP_DIFFUSE] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE0); // SHADER_LOC_MAP_ALBEDO shader.locs[SHADER_LOC_MAP_SPECULAR] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE1); // SHADER_LOC_MAP_METALNESS shader.locs[SHADER_LOC_MAP_NORMAL] = rlGetLocationUniform(shader.id, RL_DEFAULT_SHADER_SAMPLER2D_NAME_TEXTURE2); } return shader; } // Check if a shader is ready bool IsShaderReady(Shader shader) { return ((shader.id > 0) && // Validate shader id (loaded successfully) (shader.locs != NULL)); // Validate memory has been allocated for default shader locations // The following locations are tried to be set automatically (locs[i] >= 0), // any of them can be checked for validation but the only mandatory one is, afaik, SHADER_LOC_VERTEX_POSITION // NOTE: Users can also setup manually their own attributes/uniforms and do not used the default raylib ones // Vertex shader attribute locations (default) // shader.locs[SHADER_LOC_VERTEX_POSITION] // Set by default internal shader // shader.locs[SHADER_LOC_VERTEX_TEXCOORD01] // Set by default internal shader // shader.locs[SHADER_LOC_VERTEX_TEXCOORD02] // shader.locs[SHADER_LOC_VERTEX_NORMAL] // shader.locs[SHADER_LOC_VERTEX_TANGENT] // shader.locs[SHADER_LOC_VERTEX_COLOR] // Set by default internal shader // Vertex shader uniform locations (default) // shader.locs[SHADER_LOC_MATRIX_MVP] // Set by default internal shader // shader.locs[SHADER_LOC_MATRIX_VIEW] // shader.locs[SHADER_LOC_MATRIX_PROJECTION] // shader.locs[SHADER_LOC_MATRIX_MODEL] // shader.locs[SHADER_LOC_MATRIX_NORMAL] // Fragment shader uniform locations (default) // shader.locs[SHADER_LOC_COLOR_DIFFUSE] // Set by default internal shader // shader.locs[SHADER_LOC_MAP_DIFFUSE] // Set by default internal shader // shader.locs[SHADER_LOC_MAP_SPECULAR] // shader.locs[SHADER_LOC_MAP_NORMAL] } // Unload shader from GPU memory (VRAM) void UnloadShader(Shader shader) { if (shader.id != rlGetShaderIdDefault()) { rlUnloadShaderProgram(shader.id); // NOTE: If shader loading failed, it should be 0 RL_FREE(shader.locs); } } // Get shader uniform location int GetShaderLocation(Shader shader, const char *uniformName) { return rlGetLocationUniform(shader.id, uniformName); } // Get shader attribute location int GetShaderLocationAttrib(Shader shader, const char *attribName) { return rlGetLocationAttrib(shader.id, attribName); } // Set shader uniform value void SetShaderValue(Shader shader, int locIndex, const void *value, int uniformType) { SetShaderValueV(shader, locIndex, value, uniformType, 1); } // Set shader uniform value vector void SetShaderValueV(Shader shader, int locIndex, const void *value, int uniformType, int count) { if (locIndex > -1) { rlEnableShader(shader.id); rlSetUniform(locIndex, value, uniformType, count); //rlDisableShader(); // Avoid resetting current shader program, in case other uniforms are set } } // Set shader uniform value (matrix 4x4) void SetShaderValueMatrix(Shader shader, int locIndex, Matrix mat) { if (locIndex > -1) { rlEnableShader(shader.id); rlSetUniformMatrix(locIndex, mat); //rlDisableShader(); } } // Set shader uniform value for texture void SetShaderValueTexture(Shader shader, int locIndex, Texture2D texture) { if (locIndex > -1) { rlEnableShader(shader.id); rlSetUniformSampler(locIndex, texture.id); //rlDisableShader(); } } // Get a ray trace from mouse position Ray GetMouseRay(Vector2 mouse, Camera camera) { Ray ray = { 0 }; // Calculate normalized device coordinates // NOTE: y value is negative float x = (2.0f*mouse.x)/(float)GetScreenWidth() - 1.0f; float y = 1.0f - (2.0f*mouse.y)/(float)GetScreenHeight(); float z = 1.0f; // Store values in a vector Vector3 deviceCoords = { x, y, z }; // Calculate view matrix from camera look at Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up); Matrix matProj = MatrixIdentity(); if (camera.projection == CAMERA_PERSPECTIVE) { // Calculate projection matrix from perspective matProj = MatrixPerspective(camera.fovy*DEG2RAD, ((double)GetScreenWidth()/(double)GetScreenHeight()), RL_CULL_DISTANCE_NEAR, RL_CULL_DISTANCE_FAR); } else if (camera.projection == CAMERA_ORTHOGRAPHIC) { float aspect = (float)CORE.Window.screen.width/(float)CORE.Window.screen.height; double top = camera.fovy/2.0; double right = top*aspect; // Calculate projection matrix from orthographic matProj = MatrixOrtho(-right, right, -top, top, 0.01, 1000.0); } // Unproject far/near points Vector3 nearPoint = Vector3Unproject((Vector3){ deviceCoords.x, deviceCoords.y, 0.0f }, matProj, matView); Vector3 farPoint = Vector3Unproject((Vector3){ deviceCoords.x, deviceCoords.y, 1.0f }, matProj, matView); // Unproject the mouse cursor in the near plane. // We need this as the source position because orthographic projects, compared to perspective doesn't have a // convergence point, meaning that the "eye" of the camera is more like a plane than a point. Vector3 cameraPlanePointerPos = Vector3Unproject((Vector3){ deviceCoords.x, deviceCoords.y, -1.0f }, matProj, matView); // Calculate normalized direction vector Vector3 direction = Vector3Normalize(Vector3Subtract(farPoint, nearPoint)); if (camera.projection == CAMERA_PERSPECTIVE) ray.position = camera.position; else if (camera.projection == CAMERA_ORTHOGRAPHIC) ray.position = cameraPlanePointerPos; // Apply calculated vectors to ray ray.direction = direction; return ray; } // Get transform matrix for camera Matrix GetCameraMatrix(Camera camera) { return MatrixLookAt(camera.position, camera.target, camera.up); } // Get camera 2d transform matrix Matrix GetCameraMatrix2D(Camera2D camera) { Matrix matTransform = { 0 }; // The camera in world-space is set by // 1. Move it to target // 2. Rotate by -rotation and scale by (1/zoom) // When setting higher scale, it's more intuitive for the world to become bigger (= camera become smaller), // not for the camera getting bigger, hence the invert. Same deal with rotation. // 3. Move it by (-offset); // Offset defines target transform relative to screen, but since we're effectively "moving" screen (camera) // we need to do it into opposite direction (inverse transform) // Having camera transform in world-space, inverse of it gives the modelview transform. // Since (A*B*C)' = C'*B'*A', the modelview is // 1. Move to offset // 2. Rotate and Scale // 3. Move by -target Matrix matOrigin = MatrixTranslate(-camera.target.x, -camera.target.y, 0.0f); Matrix matRotation = MatrixRotate((Vector3){ 0.0f, 0.0f, 1.0f }, camera.rotation*DEG2RAD); Matrix matScale = MatrixScale(camera.zoom, camera.zoom, 1.0f); Matrix matTranslation = MatrixTranslate(camera.offset.x, camera.offset.y, 0.0f); matTransform = MatrixMultiply(MatrixMultiply(matOrigin, MatrixMultiply(matScale, matRotation)), matTranslation); return matTransform; } // Get the screen space position from a 3d world space position Vector2 GetWorldToScreen(Vector3 position, Camera camera) { Vector2 screenPosition = GetWorldToScreenEx(position, camera, GetScreenWidth(), GetScreenHeight()); return screenPosition; } // Get size position for a 3d world space position (useful for texture drawing) Vector2 GetWorldToScreenEx(Vector3 position, Camera camera, int width, int height) { // Calculate projection matrix (from perspective instead of frustum Matrix matProj = MatrixIdentity(); if (camera.projection == CAMERA_PERSPECTIVE) { // Calculate projection matrix from perspective matProj = MatrixPerspective(camera.fovy*DEG2RAD, ((double)width/(double)height), RL_CULL_DISTANCE_NEAR, RL_CULL_DISTANCE_FAR); } else if (camera.projection == CAMERA_ORTHOGRAPHIC) { float aspect = (float)CORE.Window.screen.width/(float)CORE.Window.screen.height; double top = camera.fovy/2.0; double right = top*aspect; // Calculate projection matrix from orthographic matProj = MatrixOrtho(-right, right, -top, top, RL_CULL_DISTANCE_NEAR, RL_CULL_DISTANCE_FAR); } // Calculate view matrix from camera look at (and transpose it) Matrix matView = MatrixLookAt(camera.position, camera.target, camera.up); // TODO: Why not use Vector3Transform(Vector3 v, Matrix mat)? // Convert world position vector to quaternion Quaternion worldPos = { position.x, position.y, position.z, 1.0f }; // Transform world position to view worldPos = QuaternionTransform(worldPos, matView); // Transform result to projection (clip space position) worldPos = QuaternionTransform(worldPos, matProj); // Calculate normalized device coordinates (inverted y) Vector3 ndcPos = { worldPos.x/worldPos.w, -worldPos.y/worldPos.w, worldPos.z/worldPos.w }; // Calculate 2d screen position vector Vector2 screenPosition = { (ndcPos.x + 1.0f)/2.0f*(float)width, (ndcPos.y + 1.0f)/2.0f*(float)height }; return screenPosition; } // Get the screen space position for a 2d camera world space position Vector2 GetWorldToScreen2D(Vector2 position, Camera2D camera) { Matrix matCamera = GetCameraMatrix2D(camera); Vector3 transform = Vector3Transform((Vector3){ position.x, position.y, 0 }, matCamera); return (Vector2){ transform.x, transform.y }; } // Get the world space position for a 2d camera screen space position Vector2 GetScreenToWorld2D(Vector2 position, Camera2D camera) { Matrix invMatCamera = MatrixInvert(GetCameraMatrix2D(camera)); Vector3 transform = Vector3Transform((Vector3){ position.x, position.y, 0 }, invMatCamera); return (Vector2){ transform.x, transform.y }; } // Set target FPS (maximum) void SetTargetFPS(int fps) { if (fps < 1) CORE.Time.target = 0.0; else CORE.Time.target = 1.0/(double)fps; TRACELOG(LOG_INFO, "TIMER: Target time per frame: %02.03f milliseconds", (float)CORE.Time.target*1000.0f); } // Get current FPS // NOTE: We calculate an average framerate int GetFPS(void) { int fps = 0; #if !defined(SUPPORT_CUSTOM_FRAME_CONTROL) #define FPS_CAPTURE_FRAMES_COUNT 30 // 30 captures #define FPS_AVERAGE_TIME_SECONDS 0.5f // 500 milliseconds #define FPS_STEP (FPS_AVERAGE_TIME_SECONDS/FPS_CAPTURE_FRAMES_COUNT) static int index = 0; static float history[FPS_CAPTURE_FRAMES_COUNT] = { 0 }; static float average = 0, last = 0; float fpsFrame = GetFrameTime(); if (fpsFrame == 0) return 0; if ((GetTime() - last) > FPS_STEP) { last = (float)GetTime(); index = (index + 1)%FPS_CAPTURE_FRAMES_COUNT; average -= history[index]; history[index] = fpsFrame/FPS_CAPTURE_FRAMES_COUNT; average += history[index]; } fps = (int)roundf(1.0f/average); #endif return fps; } // Get time in seconds for last frame drawn (delta time) float GetFrameTime(void) { return (float)CORE.Time.frame; } // Setup window configuration flags (view FLAGS) // NOTE: This function is expected to be called before window creation, // because it sets up some flags for the window creation process. // To configure window states after creation, just use SetWindowState() void SetConfigFlags(unsigned int flags) { // Selected flags are set but not evaluated at this point, // flag evaluation happens at InitWindow() or SetWindowState() CORE.Window.flags |= flags; } // Get a random value between min and max (both included) // WARNING: Ranges higher than RAND_MAX will return invalid results // More specifically, if (max - min) > INT_MAX there will be an overflow, // and otherwise if (max - min) > RAND_MAX the random value will incorrectly never exceed a certain threshold int GetRandomValue(int min, int max) { if (min > max) { int tmp = max; max = min; min = tmp; } if ((unsigned int)(max - min) > (unsigned int)RAND_MAX) { TRACELOG(LOG_WARNING, "Invalid GetRandomValue() arguments, range should not be higher than %i", RAND_MAX); } return (rand()%(abs(max - min) + 1) + min); } // Set the seed for the random number generator void SetRandomSeed(unsigned int seed) { srand(seed); } // Check if the file exists bool FileExists(const char *fileName) { bool result = false; #if defined(_WIN32) if (_access(fileName, 0) != -1) result = true; #else if (access(fileName, F_OK) != -1) result = true; #endif // NOTE: Alternatively, stat() can be used instead of access() //#include //struct stat statbuf; //if (stat(filename, &statbuf) == 0) result = true; return result; } // Check file extension // NOTE: Extensions checking is not case-sensitive bool IsFileExtension(const char *fileName, const char *ext) { #define MAX_FILE_EXTENSION_SIZE 16 bool result = false; const char *fileExt = GetFileExtension(fileName); if (fileExt != NULL) { #if defined(SUPPORT_MODULE_RTEXT) && defined(SUPPORT_TEXT_MANIPULATION) int extCount = 0; const char **checkExts = TextSplit(ext, ';', &extCount); // WARNING: Module required: rtext char fileExtLower[MAX_FILE_EXTENSION_SIZE + 1] = { 0 }; strncpy(fileExtLower, TextToLower(fileExt), MAX_FILE_EXTENSION_SIZE); // WARNING: Module required: rtext for (int i = 0; i < extCount; i++) { if (strcmp(fileExtLower, TextToLower(checkExts[i])) == 0) { result = true; break; } } #else if (strcmp(fileExt, ext) == 0) result = true; #endif } return result; } // Check if a directory path exists bool DirectoryExists(const char *dirPath) { bool result = false; DIR *dir = opendir(dirPath); if (dir != NULL) { result = true; closedir(dir); } return result; } // Get file length in bytes // NOTE: GetFileSize() conflicts with windows.h int GetFileLength(const char *fileName) { int size = 0; // NOTE: On Unix-like systems, it can by used the POSIX system call: stat(), // but depending on the platform that call could not be available //struct stat result = { 0 }; //stat(fileName, &result); //return result.st_size; FILE *file = fopen(fileName, "rb"); if (file != NULL) { fseek(file, 0L, SEEK_END); long int fileSize = ftell(file); // Check for size overflow (INT_MAX) if (fileSize > 2147483647) TRACELOG(LOG_WARNING, "[%s] File size overflows expected limit, do not use GetFileLength()", fileName); else size = (int)fileSize; fclose(file); } return size; } // Get pointer to extension for a filename string (includes the dot: .png) const char *GetFileExtension(const char *fileName) { const char *dot = strrchr(fileName, '.'); if (!dot || dot == fileName) return NULL; return dot; } // String pointer reverse break: returns right-most occurrence of charset in s static const char *strprbrk(const char *s, const char *charset) { const char *latestMatch = NULL; for (; s = strpbrk(s, charset), s != NULL; latestMatch = s++) { } return latestMatch; } // Get pointer to filename for a path string const char *GetFileName(const char *filePath) { const char *fileName = NULL; if (filePath != NULL) fileName = strprbrk(filePath, "\\/"); if (!fileName) return filePath; return fileName + 1; } // Get filename string without extension (uses static string) const char *GetFileNameWithoutExt(const char *filePath) { #define MAX_FILENAMEWITHOUTEXT_LENGTH 256 static char fileName[MAX_FILENAMEWITHOUTEXT_LENGTH] = { 0 }; memset(fileName, 0, MAX_FILENAMEWITHOUTEXT_LENGTH); if (filePath != NULL) strcpy(fileName, GetFileName(filePath)); // Get filename with extension int size = (int)strlen(fileName); // Get size in bytes for (int i = 0; (i < size) && (i < MAX_FILENAMEWITHOUTEXT_LENGTH); i++) { if (fileName[i] == '.') { // NOTE: We break on first '.' found fileName[i] = '\0'; break; } } return fileName; } // Get directory for a given filePath const char *GetDirectoryPath(const char *filePath) { /* // NOTE: Directory separator is different in Windows and other platforms, // fortunately, Windows also support the '/' separator, that's the one should be used #if defined(_WIN32) char separator = '\\'; #else char separator = '/'; #endif */ const char *lastSlash = NULL; static char dirPath[MAX_FILEPATH_LENGTH] = { 0 }; memset(dirPath, 0, MAX_FILEPATH_LENGTH); // In case provided path does not contain a root drive letter (C:\, D:\) nor leading path separator (\, /), // we add the current directory path to dirPath if (filePath[1] != ':' && filePath[0] != '\\' && filePath[0] != '/') { // For security, we set starting path to current directory, // obtained path will be concatenated to this dirPath[0] = '.'; dirPath[1] = '/'; } lastSlash = strprbrk(filePath, "\\/"); if (lastSlash) { if (lastSlash == filePath) { // The last and only slash is the leading one: path is in a root directory dirPath[0] = filePath[0]; dirPath[1] = '\0'; } else { // NOTE: Be careful, strncpy() is not safe, it does not care about '\0' memcpy(dirPath + (filePath[1] != ':' && filePath[0] != '\\' && filePath[0] != '/' ? 2 : 0), filePath, strlen(filePath) - (strlen(lastSlash) - 1)); dirPath[strlen(filePath) - strlen(lastSlash) + (filePath[1] != ':' && filePath[0] != '\\' && filePath[0] != '/' ? 2 : 0)] = '\0'; // Add '\0' manually } } return dirPath; } // Get previous directory path for a given path const char *GetPrevDirectoryPath(const char *dirPath) { static char prevDirPath[MAX_FILEPATH_LENGTH] = { 0 }; memset(prevDirPath, 0, MAX_FILEPATH_LENGTH); int pathLen = (int)strlen(dirPath); if (pathLen <= 3) strcpy(prevDirPath, dirPath); for (int i = (pathLen - 1); (i >= 0) && (pathLen > 3); i--) { if ((dirPath[i] == '\\') || (dirPath[i] == '/')) { // Check for root: "C:\" or "/" if (((i == 2) && (dirPath[1] ==':')) || (i == 0)) i++; strncpy(prevDirPath, dirPath, i); break; } } return prevDirPath; } // Get current working directory const char *GetWorkingDirectory(void) { static char currentDir[MAX_FILEPATH_LENGTH] = { 0 }; memset(currentDir, 0, MAX_FILEPATH_LENGTH); char *path = GETCWD(currentDir, MAX_FILEPATH_LENGTH - 1); return path; } const char *GetApplicationDirectory(void) { static char appDir[MAX_FILEPATH_LENGTH] = { 0 }; memset(appDir, 0, MAX_FILEPATH_LENGTH); #if defined(_WIN32) int len = 0; #if defined(UNICODE) unsigned short widePath[MAX_PATH]; len = GetModuleFileNameW(NULL, widePath, MAX_PATH); len = WideCharToMultiByte(0, 0, widePath, len, appDir, MAX_PATH, NULL, NULL); #else len = GetModuleFileNameA(NULL, appDir, MAX_PATH); #endif if (len > 0) { for (int i = len; i >= 0; --i) { if (appDir[i] == '\\') { appDir[i + 1] = '\0'; break; } } } else { appDir[0] = '.'; appDir[1] = '\\'; } #elif defined(__linux__) unsigned int size = sizeof(appDir); ssize_t len = readlink("/proc/self/exe", appDir, size); if (len > 0) { for (int i = len; i >= 0; --i) { if (appDir[i] == '/') { appDir[i + 1] = '\0'; break; } } } else { appDir[0] = '.'; appDir[1] = '/'; } #elif defined(__APPLE__) uint32_t size = sizeof(appDir); if (_NSGetExecutablePath(appDir, &size) == 0) { int len = strlen(appDir); for (int i = len; i >= 0; --i) { if (appDir[i] == '/') { appDir[i + 1] = '\0'; break; } } } else { appDir[0] = '.'; appDir[1] = '/'; } #endif return appDir; } // Load directory filepaths // NOTE: Base path is prepended to the scanned filepaths // WARNING: Directory is scanned twice, first time to get files count // No recursive scanning is done! FilePathList LoadDirectoryFiles(const char *dirPath) { FilePathList files = { 0 }; unsigned int fileCounter = 0; struct dirent *entity; DIR *dir = opendir(dirPath); if (dir != NULL) // It's a directory { // SCAN 1: Count files while ((entity = readdir(dir)) != NULL) { // NOTE: We skip '.' (current dir) and '..' (parent dir) filepaths if ((strcmp(entity->d_name, ".") != 0) && (strcmp(entity->d_name, "..") != 0)) fileCounter++; } // Memory allocation for dirFileCount files.capacity = fileCounter; files.paths = (char **)RL_MALLOC(files.capacity*sizeof(char *)); for (unsigned int i = 0; i < files.capacity; i++) files.paths[i] = (char *)RL_MALLOC(MAX_FILEPATH_LENGTH*sizeof(char)); closedir(dir); // SCAN 2: Read filepaths // NOTE: Directory paths are also registered ScanDirectoryFiles(dirPath, &files, NULL); // Security check: read files.count should match fileCounter if (files.count != files.capacity) TRACELOG(LOG_WARNING, "FILEIO: Read files count do not match capacity allocated"); } else TRACELOG(LOG_WARNING, "FILEIO: Failed to open requested directory"); // Maybe it's a file... return files; } // Load directory filepaths with extension filtering and recursive directory scan // NOTE: On recursive loading we do not pre-scan for file count, we use MAX_FILEPATH_CAPACITY FilePathList LoadDirectoryFilesEx(const char *basePath, const char *filter, bool scanSubdirs) { FilePathList files = { 0 }; files.capacity = MAX_FILEPATH_CAPACITY; files.paths = (char **)RL_CALLOC(files.capacity, sizeof(char *)); for (unsigned int i = 0; i < files.capacity; i++) files.paths[i] = (char *)RL_CALLOC(MAX_FILEPATH_LENGTH, sizeof(char)); // WARNING: basePath is always prepended to scanned paths if (scanSubdirs) ScanDirectoryFilesRecursively(basePath, &files, filter); else ScanDirectoryFiles(basePath, &files, filter); return files; } // Unload directory filepaths // WARNING: files.count is not reseted to 0 after unloading void UnloadDirectoryFiles(FilePathList files) { for (unsigned int i = 0; i < files.capacity; i++) RL_FREE(files.paths[i]); RL_FREE(files.paths); } // Change working directory, returns true on success bool ChangeDirectory(const char *dir) { bool result = CHDIR(dir); if (result != 0) TRACELOG(LOG_WARNING, "SYSTEM: Failed to change to directory: %s", dir); return (result == 0); } // Check if a given path point to a file bool IsPathFile(const char *path) { struct stat result = { 0 }; stat(path, &result); return S_ISREG(result.st_mode); } // Check if a file has been dropped into window bool IsFileDropped(void) { if (CORE.Window.dropFileCount > 0) return true; else return false; } // Load dropped filepaths FilePathList LoadDroppedFiles(void) { FilePathList files = { 0 }; files.count = CORE.Window.dropFileCount; files.paths = CORE.Window.dropFilepaths; return files; } // Unload dropped filepaths void UnloadDroppedFiles(FilePathList files) { // WARNING: files pointers are the same as internal ones if (files.count > 0) { for (unsigned int i = 0; i < files.count; i++) RL_FREE(files.paths[i]); RL_FREE(files.paths); CORE.Window.dropFileCount = 0; CORE.Window.dropFilepaths = NULL; } } // Get file modification time (last write time) long GetFileModTime(const char *fileName) { struct stat result = { 0 }; if (stat(fileName, &result) == 0) { time_t mod = result.st_mtime; return (long)mod; } return 0; } // Compress data (DEFLATE algorithm) unsigned char *CompressData(const unsigned char *data, int dataSize, int *compDataSize) { #define COMPRESSION_QUALITY_DEFLATE 8 unsigned char *compData = NULL; #if defined(SUPPORT_COMPRESSION_API) // Compress data and generate a valid DEFLATE stream struct sdefl *sdefl = RL_CALLOC(1, sizeof(struct sdefl)); // WARNING: Possible stack overflow, struct sdefl is almost 1MB int bounds = dataSize*2;//sdefl_bound(dataSize); compData = (unsigned char *)RL_CALLOC(bounds, 1); *compDataSize = sdeflate(sdefl, compData, data, dataSize, COMPRESSION_QUALITY_DEFLATE); // Compression level 8, same as stbiw RL_FREE(sdefl); TRACELOG(LOG_INFO, "SYSTEM: Compress data: Original size: %i -> Comp. size: %i", dataSize, *compDataSize); #endif return compData; } // Decompress data (DEFLATE algorithm) unsigned char *DecompressData(const unsigned char *compData, int compDataSize, int *dataSize) { unsigned char *data = NULL; #if defined(SUPPORT_COMPRESSION_API) // Decompress data from a valid DEFLATE stream data = (unsigned char *)RL_CALLOC(MAX_DECOMPRESSION_SIZE*1024*1024, 1); int length = sinflate(data, MAX_DECOMPRESSION_SIZE*1024*1024, compData, compDataSize); // WARNING: RL_REALLOC can make (and leave) data copies in memory, be careful with sensitive compressed data! // TODO: Use a different approach, create another buffer, copy data manually to it and wipe original buffer memory unsigned char *temp = (unsigned char *)RL_REALLOC(data, length); if (temp != NULL) data = temp; else TRACELOG(LOG_WARNING, "SYSTEM: Failed to re-allocate required decompression memory"); *dataSize = length; TRACELOG(LOG_INFO, "SYSTEM: Decompress data: Comp. size: %i -> Original size: %i", compDataSize, *dataSize); #endif return data; } // Encode data to Base64 string char *EncodeDataBase64(const unsigned char *data, int dataSize, int *outputSize) { static const unsigned char base64encodeTable[] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '+', '/' }; static const int modTable[] = { 0, 2, 1 }; *outputSize = 4*((dataSize + 2)/3); char *encodedData = (char *)RL_MALLOC(*outputSize); if (encodedData == NULL) return NULL; for (int i = 0, j = 0; i < dataSize;) { unsigned int octetA = (i < dataSize)? (unsigned char)data[i++] : 0; unsigned int octetB = (i < dataSize)? (unsigned char)data[i++] : 0; unsigned int octetC = (i < dataSize)? (unsigned char)data[i++] : 0; unsigned int triple = (octetA << 0x10) + (octetB << 0x08) + octetC; encodedData[j++] = base64encodeTable[(triple >> 3*6) & 0x3F]; encodedData[j++] = base64encodeTable[(triple >> 2*6) & 0x3F]; encodedData[j++] = base64encodeTable[(triple >> 1*6) & 0x3F]; encodedData[j++] = base64encodeTable[(triple >> 0*6) & 0x3F]; } for (int i = 0; i < modTable[dataSize%3]; i++) encodedData[*outputSize - 1 - i] = '='; // Padding character return encodedData; } // Decode Base64 string data unsigned char *DecodeDataBase64(const unsigned char *data, int *outputSize) { static const unsigned char base64decodeTable[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 62, 0, 0, 0, 63, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 0, 0, 0, 0, 0, 0, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51 }; // Get output size of Base64 input data int outSize = 0; for (int i = 0; data[4*i] != 0; i++) { if (data[4*i + 3] == '=') { if (data[4*i + 2] == '=') outSize += 1; else outSize += 2; } else outSize += 3; } // Allocate memory to store decoded Base64 data unsigned char *decodedData = (unsigned char *)RL_MALLOC(outSize); for (int i = 0; i < outSize/3; i++) { unsigned char a = base64decodeTable[(int)data[4*i]]; unsigned char b = base64decodeTable[(int)data[4*i + 1]]; unsigned char c = base64decodeTable[(int)data[4*i + 2]]; unsigned char d = base64decodeTable[(int)data[4*i + 3]]; decodedData[3*i] = (a << 2) | (b >> 4); decodedData[3*i + 1] = (b << 4) | (c >> 2); decodedData[3*i + 2] = (c << 6) | d; } if (outSize%3 == 1) { int n = outSize/3; unsigned char a = base64decodeTable[(int)data[4*n]]; unsigned char b = base64decodeTable[(int)data[4*n + 1]]; decodedData[outSize - 1] = (a << 2) | (b >> 4); } else if (outSize%3 == 2) { int n = outSize/3; unsigned char a = base64decodeTable[(int)data[4*n]]; unsigned char b = base64decodeTable[(int)data[4*n + 1]]; unsigned char c = base64decodeTable[(int)data[4*n + 2]]; decodedData[outSize - 2] = (a << 2) | (b >> 4); decodedData[outSize - 1] = (b << 4) | (c >> 2); } *outputSize = outSize; return decodedData; } //---------------------------------------------------------------------------------- // Module Functions Definition - Input (Keyboard, Mouse, Gamepad) Functions //---------------------------------------------------------------------------------- // Check if a key has been pressed once bool IsKeyPressed(int key) { bool pressed = false; if ((key > 0) && (key < MAX_KEYBOARD_KEYS)) { if ((CORE.Input.Keyboard.previousKeyState[key] == 0) && (CORE.Input.Keyboard.currentKeyState[key] == 1)) pressed = true; } return pressed; } // Check if a key has been pressed again (only PLATFORM_DESKTOP) bool IsKeyPressedRepeat(int key) { bool repeat = false; if ((key > 0) && (key < MAX_KEYBOARD_KEYS)) { if (CORE.Input.Keyboard.keyRepeatInFrame[key] == 1) repeat = true; } return repeat; } // Check if a key is being pressed (key held down) bool IsKeyDown(int key) { bool down = false; if ((key > 0) && (key < MAX_KEYBOARD_KEYS)) { if (CORE.Input.Keyboard.currentKeyState[key] == 1) down = true; } return down; } // Check if a key has been released once bool IsKeyReleased(int key) { bool released = false; if ((key > 0) && (key < MAX_KEYBOARD_KEYS)) { if ((CORE.Input.Keyboard.previousKeyState[key] == 1) && (CORE.Input.Keyboard.currentKeyState[key] == 0)) released = true; } return released; } // Check if a key is NOT being pressed (key not held down) bool IsKeyUp(int key) { bool up = false; if ((key > 0) && (key < MAX_KEYBOARD_KEYS)) { if (CORE.Input.Keyboard.currentKeyState[key] == 0) up = true; } return up; } // Get the last key pressed int GetKeyPressed(void) { int value = 0; if (CORE.Input.Keyboard.keyPressedQueueCount > 0) { // Get character from the queue head value = CORE.Input.Keyboard.keyPressedQueue[0]; // Shift elements 1 step toward the head for (int i = 0; i < (CORE.Input.Keyboard.keyPressedQueueCount - 1); i++) CORE.Input.Keyboard.keyPressedQueue[i] = CORE.Input.Keyboard.keyPressedQueue[i + 1]; // Reset last character in the queue CORE.Input.Keyboard.keyPressedQueue[CORE.Input.Keyboard.keyPressedQueueCount - 1] = 0; CORE.Input.Keyboard.keyPressedQueueCount--; } return value; } // Get the last char pressed int GetCharPressed(void) { int value = 0; if (CORE.Input.Keyboard.charPressedQueueCount > 0) { // Get character from the queue head value = CORE.Input.Keyboard.charPressedQueue[0]; // Shift elements 1 step toward the head for (int i = 0; i < (CORE.Input.Keyboard.charPressedQueueCount - 1); i++) CORE.Input.Keyboard.charPressedQueue[i] = CORE.Input.Keyboard.charPressedQueue[i + 1]; // Reset last character in the queue CORE.Input.Keyboard.charPressedQueue[CORE.Input.Keyboard.charPressedQueueCount - 1] = 0; CORE.Input.Keyboard.charPressedQueueCount--; } return value; } //// Set a custom key to exit program //// NOTE: default exitKey is ESCAPE //void SetExitKey(int key) //{ //#if !defined(PLATFORM_ANDROID) // CORE.Input.Keyboard.exitKey = key; //#endif //} // NOTE: Gamepad support not implemented in emscripten GLFW3 (PLATFORM_WEB) // Check if a gamepad is available bool IsGamepadAvailable(int gamepad) { bool result = false; if ((gamepad < MAX_GAMEPADS) && CORE.Input.Gamepad.ready[gamepad]) result = true; return result; } // Get axis movement vector for a gamepad float GetGamepadAxisMovement(int gamepad, int axis) { float value = 0; if ((gamepad < MAX_GAMEPADS) && CORE.Input.Gamepad.ready[gamepad] && (axis < MAX_GAMEPAD_AXIS) && (fabsf(CORE.Input.Gamepad.axisState[gamepad][axis]) > 0.1f)) value = CORE.Input.Gamepad.axisState[gamepad][axis]; // 0.1f = GAMEPAD_AXIS_MINIMUM_DRIFT/DELTA return value; } // Check if a gamepad button has been pressed once bool IsGamepadButtonPressed(int gamepad, int button) { bool pressed = false; if ((gamepad < MAX_GAMEPADS) && CORE.Input.Gamepad.ready[gamepad] && (button < MAX_GAMEPAD_BUTTONS) && (CORE.Input.Gamepad.previousButtonState[gamepad][button] == 0) && (CORE.Input.Gamepad.currentButtonState[gamepad][button] == 1)) pressed = true; return pressed; } // Check if a gamepad button is being pressed bool IsGamepadButtonDown(int gamepad, int button) { bool down = false; if ((gamepad < MAX_GAMEPADS) && CORE.Input.Gamepad.ready[gamepad] && (button < MAX_GAMEPAD_BUTTONS) && (CORE.Input.Gamepad.currentButtonState[gamepad][button] == 1)) down = true; return down; } // Check if a gamepad button has NOT been pressed once bool IsGamepadButtonReleased(int gamepad, int button) { bool released = false; if ((gamepad < MAX_GAMEPADS) && CORE.Input.Gamepad.ready[gamepad] && (button < MAX_GAMEPAD_BUTTONS) && (CORE.Input.Gamepad.previousButtonState[gamepad][button] == 1) && (CORE.Input.Gamepad.currentButtonState[gamepad][button] == 0)) released = true; return released; } // Check if a gamepad button is NOT being pressed bool IsGamepadButtonUp(int gamepad, int button) { bool up = false; if ((gamepad < MAX_GAMEPADS) && CORE.Input.Gamepad.ready[gamepad] && (button < MAX_GAMEPAD_BUTTONS) && (CORE.Input.Gamepad.currentButtonState[gamepad][button] == 0)) up = true; return up; } // Get the last gamepad button pressed int GetGamepadButtonPressed(void) { return CORE.Input.Gamepad.lastButtonPressed; } // Check if a mouse button has been pressed once bool IsMouseButtonPressed(int button) { bool pressed = false; if ((CORE.Input.Mouse.currentButtonState[button] == 1) && (CORE.Input.Mouse.previousButtonState[button] == 0)) pressed = true; // Map touches to mouse buttons checking if ((CORE.Input.Touch.currentTouchState[button] == 1) && (CORE.Input.Touch.previousTouchState[button] == 0)) pressed = true; return pressed; } // Check if a mouse button is being pressed bool IsMouseButtonDown(int button) { bool down = false; if (CORE.Input.Mouse.currentButtonState[button] == 1) down = true; // NOTE: Touches are considered like mouse buttons if (CORE.Input.Touch.currentTouchState[button] == 1) down = true; return down; } // Check if a mouse button has been released once bool IsMouseButtonReleased(int button) { bool released = false; if ((CORE.Input.Mouse.currentButtonState[button] == 0) && (CORE.Input.Mouse.previousButtonState[button] == 1)) released = true; // Map touches to mouse buttons checking if ((CORE.Input.Touch.currentTouchState[button] == 0) && (CORE.Input.Touch.previousTouchState[button] == 1)) released = true; return released; } // Check if a mouse button is NOT being pressed bool IsMouseButtonUp(int button) { bool up = false; if (CORE.Input.Mouse.currentButtonState[button] == 0) up = true; // NOTE: Touches are considered like mouse buttons if (CORE.Input.Touch.currentTouchState[button] == 0) up = true; return up; } // Get mouse delta between frames Vector2 GetMouseDelta(void) { Vector2 delta = { 0 }; delta.x = CORE.Input.Mouse.currentPosition.x - CORE.Input.Mouse.previousPosition.x; delta.y = CORE.Input.Mouse.currentPosition.y - CORE.Input.Mouse.previousPosition.y; return delta; } // Set mouse offset // NOTE: Useful when rendering to different size targets void SetMouseOffset(int offsetX, int offsetY) { CORE.Input.Mouse.offset = (Vector2){ (float)offsetX, (float)offsetY }; } // Set mouse scaling // NOTE: Useful when rendering to different size targets void SetMouseScale(float scaleX, float scaleY) { CORE.Input.Mouse.scale = (Vector2){ scaleX, scaleY }; } // Get mouse wheel movement X/Y as a vector Vector2 GetMouseWheelMoveV(void) { Vector2 result = { 0 }; result = CORE.Input.Mouse.currentWheelMove; return result; } //// Set mouse cursor //// NOTE: This is a no-op on platforms other than PLATFORM_DESKTOP //void SetMouseCursor(int cursor) //{ //#if defined(PLATFORM_DESKTOP) // CORE.Input.Mouse.cursor = cursor; // if (cursor == MOUSE_CURSOR_DEFAULT) glfwSetCursor(CORE.Window.handle, NULL); // else // { // // NOTE: We are relating internal GLFW enum values to our MouseCursor enum values // glfwSetCursor(CORE.Window.handle, glfwCreateStandardCursor(0x00036000 + cursor)); // } //#endif //} //// Get touch position X for touch point 0 (relative to screen size) //int GetTouchX(void) //{ //#if defined(PLATFORM_ANDROID) || defined(PLATFORM_WEB) // return (int)CORE.Input.Touch.position[0].x; //#else // PLATFORM_DESKTOP, PLATFORM_DRM // return GetMouseX(); //#endif //} //// Get touch position Y for touch point 0 (relative to screen size) //int GetTouchY(void) //{ //#if defined(PLATFORM_ANDROID) || defined(PLATFORM_WEB) // return (int)CORE.Input.Touch.position[0].y; //#else // PLATFORM_DESKTOP, PLATFORM_DRM // return GetMouseY(); //#endif //} //// Get touch position XY for a touch point index (relative to screen size) //// TODO: Touch position should be scaled depending on display size and render size //Vector2 GetTouchPosition(int index) //{ // Vector2 position = { -1.0f, -1.0f }; // //#if defined(PLATFORM_DESKTOP) // // TODO: GLFW does not support multi-touch input just yet // // https://www.codeproject.com/Articles/668404/Programming-for-Multi-Touch // // https://docs.microsoft.com/en-us/windows/win32/wintouch/getting-started-with-multi-touch-messages // if (index == 0) position = GetMousePosition(); //#endif //#if defined(PLATFORM_ANDROID) || defined(PLATFORM_WEB) || defined(PLATFORM_DRM) // if (index < MAX_TOUCH_POINTS) position = CORE.Input.Touch.position[index]; // else TRACELOG(LOG_WARNING, "INPUT: Required touch point out of range (Max touch points: %i)", MAX_TOUCH_POINTS); //#endif // // return position; //} // Get touch point identifier for given index int GetTouchPointId(int index) { int id = -1; if (index < MAX_TOUCH_POINTS) id = CORE.Input.Touch.pointId[index]; return id; } // Get number of touch points int GetTouchPointCount(void) { return CORE.Input.Touch.pointCount; } //---------------------------------------------------------------------------------- // Module specific Functions Definition //---------------------------------------------------------------------------------- // Set viewport for a provided width and height void SetupViewport(int width, int height) { CORE.Window.render.width = width; CORE.Window.render.height = height; // Set viewport width and height // NOTE: We consider render size (scaled) and offset in case black bars are required and // render area does not match full display area (this situation is only applicable on fullscreen mode) #if defined(__APPLE__) float xScale = 1.0f, yScale = 1.0f; glfwGetWindowContentScale(CORE.Window.handle, &xScale, &yScale); rlViewport(CORE.Window.renderOffset.x/2*xScale, CORE.Window.renderOffset.y/2*yScale, (CORE.Window.render.width)*xScale, (CORE.Window.render.height)*yScale); #else rlViewport(CORE.Window.renderOffset.x/2, CORE.Window.renderOffset.y/2, CORE.Window.render.width, CORE.Window.render.height); #endif rlMatrixMode(RL_PROJECTION); // Switch to projection matrix rlLoadIdentity(); // Reset current matrix (projection) // Set orthographic projection to current framebuffer size // NOTE: Configured top-left corner as (0, 0) rlOrtho(0, CORE.Window.render.width, CORE.Window.render.height, 0, 0.0f, 1.0f); rlMatrixMode(RL_MODELVIEW); // Switch back to modelview matrix rlLoadIdentity(); // Reset current matrix (modelview) } // Compute framebuffer size relative to screen size and display size // NOTE: Global variables CORE.Window.render.width/CORE.Window.render.height and CORE.Window.renderOffset.x/CORE.Window.renderOffset.y can be modified void SetupFramebuffer(int width, int height) { // Calculate CORE.Window.render.width and CORE.Window.render.height, we have the display size (input params) and the desired screen size (global var) if ((CORE.Window.screen.width > CORE.Window.display.width) || (CORE.Window.screen.height > CORE.Window.display.height)) { TRACELOG(LOG_WARNING, "DISPLAY: Downscaling required: Screen size (%ix%i) is bigger than display size (%ix%i)", CORE.Window.screen.width, CORE.Window.screen.height, CORE.Window.display.width, CORE.Window.display.height); // Downscaling to fit display with border-bars float widthRatio = (float)CORE.Window.display.width/(float)CORE.Window.screen.width; float heightRatio = (float)CORE.Window.display.height/(float)CORE.Window.screen.height; if (widthRatio <= heightRatio) { CORE.Window.render.width = CORE.Window.display.width; CORE.Window.render.height = (int)round((float)CORE.Window.screen.height*widthRatio); CORE.Window.renderOffset.x = 0; CORE.Window.renderOffset.y = (CORE.Window.display.height - CORE.Window.render.height); } else { CORE.Window.render.width = (int)round((float)CORE.Window.screen.width*heightRatio); CORE.Window.render.height = CORE.Window.display.height; CORE.Window.renderOffset.x = (CORE.Window.display.width - CORE.Window.render.width); CORE.Window.renderOffset.y = 0; } // Screen scaling required float scaleRatio = (float)CORE.Window.render.width/(float)CORE.Window.screen.width; CORE.Window.screenScale = MatrixScale(scaleRatio, scaleRatio, 1.0f); // NOTE: We render to full display resolution! // We just need to calculate above parameters for downscale matrix and offsets CORE.Window.render.width = CORE.Window.display.width; CORE.Window.render.height = CORE.Window.display.height; TRACELOG(LOG_WARNING, "DISPLAY: Downscale matrix generated, content will be rendered at (%ix%i)", CORE.Window.render.width, CORE.Window.render.height); } else if ((CORE.Window.screen.width < CORE.Window.display.width) || (CORE.Window.screen.height < CORE.Window.display.height)) { // Required screen size is smaller than display size TRACELOG(LOG_INFO, "DISPLAY: Upscaling required: Screen size (%ix%i) smaller than display size (%ix%i)", CORE.Window.screen.width, CORE.Window.screen.height, CORE.Window.display.width, CORE.Window.display.height); if ((CORE.Window.screen.width == 0) || (CORE.Window.screen.height == 0)) { CORE.Window.screen.width = CORE.Window.display.width; CORE.Window.screen.height = CORE.Window.display.height; } // Upscaling to fit display with border-bars float displayRatio = (float)CORE.Window.display.width/(float)CORE.Window.display.height; float screenRatio = (float)CORE.Window.screen.width/(float)CORE.Window.screen.height; if (displayRatio <= screenRatio) { CORE.Window.render.width = CORE.Window.screen.width; CORE.Window.render.height = (int)round((float)CORE.Window.screen.width/displayRatio); CORE.Window.renderOffset.x = 0; CORE.Window.renderOffset.y = (CORE.Window.render.height - CORE.Window.screen.height); } else { CORE.Window.render.width = (int)round((float)CORE.Window.screen.height*displayRatio); CORE.Window.render.height = CORE.Window.screen.height; CORE.Window.renderOffset.x = (CORE.Window.render.width - CORE.Window.screen.width); CORE.Window.renderOffset.y = 0; } } else { CORE.Window.render.width = CORE.Window.screen.width; CORE.Window.render.height = CORE.Window.screen.height; CORE.Window.renderOffset.x = 0; CORE.Window.renderOffset.y = 0; } } // Initialize hi-resolution timer void InitTimer(void) { // Setting a higher resolution can improve the accuracy of time-out intervals in wait functions. // However, it can also reduce overall system performance, because the thread scheduler switches tasks more often. // High resolutions can also prevent the CPU power management system from entering power-saving modes. // Setting a higher resolution does not improve the accuracy of the high-resolution performance counter. #if defined(_WIN32) && defined(SUPPORT_WINMM_HIGHRES_TIMER) && !defined(SUPPORT_BUSY_WAIT_LOOP) timeBeginPeriod(1); // Setup high-resolution timer to 1ms (granularity of 1-2 ms) #endif #if defined(PLATFORM_ANDROID) || defined(PLATFORM_DRM) struct timespec now = { 0 }; if (clock_gettime(CLOCK_MONOTONIC, &now) == 0) // Success { CORE.Time.base = (unsigned long long int)now.tv_sec*1000000000LLU + (unsigned long long int)now.tv_nsec; } else TRACELOG(LOG_WARNING, "TIMER: Hi-resolution timer not available"); #endif CORE.Time.previous = GetTime(); // Get time as double } // Wait for some time (stop program execution) // NOTE: Sleep() granularity could be around 10 ms, it means, Sleep() could // take longer than expected... for that reason we use the busy wait loop // Ref: http://stackoverflow.com/questions/43057578/c-programming-win32-games-sleep-taking-longer-than-expected // Ref: http://www.geisswerks.com/ryan/FAQS/timing.html --> All about timing on Win32! void WaitTime(double seconds) { #if defined(SUPPORT_BUSY_WAIT_LOOP) || defined(SUPPORT_PARTIALBUSY_WAIT_LOOP) double destinationTime = GetTime() + seconds; #endif #if defined(SUPPORT_BUSY_WAIT_LOOP) while (GetTime() < destinationTime) { } #else #if defined(SUPPORT_PARTIALBUSY_WAIT_LOOP) double sleepSeconds = seconds - seconds*0.05; // NOTE: We reserve a percentage of the time for busy waiting #else double sleepSeconds = seconds; #endif // System halt functions #if defined(_WIN32) Sleep((unsigned long)(sleepSeconds*1000.0)); #endif #if defined(__linux__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__EMSCRIPTEN__) struct timespec req = { 0 }; time_t sec = sleepSeconds; long nsec = (sleepSeconds - sec)*1000000000L; req.tv_sec = sec; req.tv_nsec = nsec; // NOTE: Use nanosleep() on Unix platforms... usleep() it's deprecated. while (nanosleep(&req, &req) == -1) continue; #endif #if defined(__APPLE__) usleep(sleepSeconds*1000000.0); #endif #if defined(SUPPORT_PARTIALBUSY_WAIT_LOOP) while (GetTime() < destinationTime) { } #endif #endif } // Scan all files and directories in a base path // WARNING: files.paths[] must be previously allocated and // contain enough space to store all required paths static void ScanDirectoryFiles(const char *basePath, FilePathList *files, const char *filter) { static char path[MAX_FILEPATH_LENGTH] = { 0 }; memset(path, 0, MAX_FILEPATH_LENGTH); struct dirent *dp = NULL; DIR *dir = opendir(basePath); if (dir != NULL) { while ((dp = readdir(dir)) != NULL) { if ((strcmp(dp->d_name, ".") != 0) && (strcmp(dp->d_name, "..") != 0)) { sprintf(path, "%s/%s", basePath, dp->d_name); if (filter != NULL) { if (IsFileExtension(path, filter)) { strcpy(files->paths[files->count], path); files->count++; } } else { strcpy(files->paths[files->count], path); files->count++; } } } closedir(dir); } else TRACELOG(LOG_WARNING, "FILEIO: Directory cannot be opened (%s)", basePath); } // Scan all files and directories recursively from a base path static void ScanDirectoryFilesRecursively(const char *basePath, FilePathList *files, const char *filter) { char path[MAX_FILEPATH_LENGTH] = { 0 }; memset(path, 0, MAX_FILEPATH_LENGTH); struct dirent *dp = NULL; DIR *dir = opendir(basePath); if (dir != NULL) { while (((dp = readdir(dir)) != NULL) && (files->count < files->capacity)) { if ((strcmp(dp->d_name, ".") != 0) && (strcmp(dp->d_name, "..") != 0)) { // Construct new path from our base path sprintf(path, "%s/%s", basePath, dp->d_name); if (IsPathFile(path)) { if (filter != NULL) { if (IsFileExtension(path, filter)) { strcpy(files->paths[files->count], path); files->count++; } } else { strcpy(files->paths[files->count], path); files->count++; } if (files->count >= files->capacity) { TRACELOG(LOG_WARNING, "FILEIO: Maximum filepath scan capacity reached (%i files)", files->capacity); break; } } else ScanDirectoryFilesRecursively(path, files, filter); } } closedir(dir); } else TRACELOG(LOG_WARNING, "FILEIO: Directory cannot be opened (%s)", basePath); } //#if defined(PLATFORM_DESKTOP) || defined(PLATFORM_WEB) // //// GLFW3 WindowSize Callback, runs when window is resizedLastFrame //// NOTE: Window resizing not allowed by default //static void WindowSizeCallback(GLFWwindow *window, int width, int height) //{ // // Reset viewport and projection matrix for new size // SetupViewport(width, height); // // CORE.Window.currentFbo.width = width; // CORE.Window.currentFbo.height = height; // CORE.Window.resizedLastFrame = true; // // if (IsWindowFullscreen()) return; // // // Set current screen size //#if defined(__APPLE__) // CORE.Window.screen.width = width; // CORE.Window.screen.height = height; //#else // if ((CORE.Window.flags & FLAG_WINDOW_HIGHDPI) > 0) // { // Vector2 windowScaleDPI = GetWindowScaleDPI(); // // CORE.Window.screen.width = (unsigned int)(width/windowScaleDPI.x); // CORE.Window.screen.height = (unsigned int)(height/windowScaleDPI.y); // } // else // { // CORE.Window.screen.width = width; // CORE.Window.screen.height = height; // } //#endif // // // NOTE: Postprocessing texture is not scaled to new size //} // //// GLFW3 WindowIconify Callback, runs when window is minimized/restored //static void WindowIconifyCallback(GLFWwindow *window, int iconified) //{ // if (iconified) CORE.Window.flags |= FLAG_WINDOW_MINIMIZED; // The window was iconified // else CORE.Window.flags &= ~FLAG_WINDOW_MINIMIZED; // The window was restored //} // //// GLFW3 WindowFocus Callback, runs when window get/lose focus //static void WindowFocusCallback(GLFWwindow *window, int focused) //{ // if (focused) CORE.Window.flags &= ~FLAG_WINDOW_UNFOCUSED; // The window was focused // else CORE.Window.flags |= FLAG_WINDOW_UNFOCUSED; // The window lost focus //} // //// GLFW3 Keyboard Callback, runs on key pressed //static void KeyCallback(GLFWwindow *window, int key, int scancode, int action, int mods) //{ // if (key < 0) return; // Security check, macOS fn key generates -1 // // // WARNING: GLFW could return GLFW_REPEAT, we need to consider it as 1 // // to work properly with our implementation (IsKeyDown/IsKeyUp checks) // if (action == GLFW_RELEASE) CORE.Input.Keyboard.currentKeyState[key] = 0; // else if(action == GLFW_PRESS) CORE.Input.Keyboard.currentKeyState[key] = 1; // else if(action == GLFW_REPEAT) CORE.Input.Keyboard.keyRepeatInFrame[key] = 1; // //#if !defined(PLATFORM_WEB) // // WARNING: Check if CAPS/NUM key modifiers are enabled and force down state for those keys // if (((key == KEY_CAPS_LOCK) && ((mods & GLFW_MOD_CAPS_LOCK) > 0)) || // ((key == KEY_NUM_LOCK) && ((mods & GLFW_MOD_NUM_LOCK) > 0))) CORE.Input.Keyboard.currentKeyState[key] = 1; //#endif // // // Check if there is space available in the key queue // if ((CORE.Input.Keyboard.keyPressedQueueCount < MAX_KEY_PRESSED_QUEUE) && (action == GLFW_PRESS)) // { // // Add character to the queue // CORE.Input.Keyboard.keyPressedQueue[CORE.Input.Keyboard.keyPressedQueueCount] = key; // CORE.Input.Keyboard.keyPressedQueueCount++; // } // // // Check the exit key to set close window // if ((key == CORE.Input.Keyboard.exitKey) && (action == GLFW_PRESS)) glfwSetWindowShouldClose(CORE.Window.handle, GLFW_TRUE); // //#if defined(SUPPORT_SCREEN_CAPTURE) // if ((key == GLFW_KEY_F12) && (action == GLFW_PRESS)) // { //#if defined(SUPPORT_GIF_RECORDING) // if (mods & GLFW_MOD_CONTROL) // { // if (gifRecording) // { // gifRecording = false; // // MsfGifResult result = msf_gif_end(&gifState); // // SaveFileData(TextFormat("%s/screenrec%03i.gif", CORE.Storage.basePath, screenshotCounter), result.data, (unsigned int)result.dataSize); // msf_gif_free(result); // // #if defined(PLATFORM_WEB) // // Download file from MEMFS (emscripten memory filesystem) // // saveFileFromMEMFSToDisk() function is defined in raylib/templates/web_shel/shell.html // emscripten_run_script(TextFormat("saveFileFromMEMFSToDisk('%s','%s')", TextFormat("screenrec%03i.gif", screenshotCounter - 1), TextFormat("screenrec%03i.gif", screenshotCounter - 1))); // #endif // // TRACELOG(LOG_INFO, "SYSTEM: Finish animated GIF recording"); // } // else // { // gifRecording = true; // gifFrameCounter = 0; // // Vector2 scale = GetWindowScaleDPI(); // msf_gif_begin(&gifState, (int)((float)CORE.Window.render.width*scale.x), (int)((float)CORE.Window.render.height*scale.y)); // screenshotCounter++; // // TRACELOG(LOG_INFO, "SYSTEM: Start animated GIF recording: %s", TextFormat("screenrec%03i.gif", screenshotCounter)); // } // } // else //#endif // SUPPORT_GIF_RECORDING // { // TakeScreenshot(TextFormat("screenshot%03i.png", screenshotCounter)); // screenshotCounter++; // } // } //#endif // SUPPORT_SCREEN_CAPTURE // //#if defined(SUPPORT_EVENTS_AUTOMATION) // if ((key == GLFW_KEY_F11) && (action == GLFW_PRESS)) // { // eventsRecording = !eventsRecording; // // // On finish recording, we export events into a file // if (!eventsRecording) ExportAutomationEvents("eventsrec.rep"); // } // else if ((key == GLFW_KEY_F9) && (action == GLFW_PRESS)) // { // LoadAutomationEvents("eventsrec.rep"); // eventsPlaying = true; // // TRACELOG(LOG_WARNING, "eventsPlaying enabled!"); // } //#endif //} // //// GLFW3 Char Key Callback, runs on key down (gets equivalent unicode char value) //static void CharCallback(GLFWwindow *window, unsigned int key) //{ // //TRACELOG(LOG_DEBUG, "Char Callback: KEY:%i(%c)", key, key); // // // NOTE: Registers any key down considering OS keyboard layout but // // does not detect action events, those should be managed by user... // // Ref: https://github.com/glfw/glfw/issues/668#issuecomment-166794907 // // Ref: https://www.glfw.org/docs/latest/input_guide.html#input_char // // // Check if there is space available in the queue // if (CORE.Input.Keyboard.charPressedQueueCount < MAX_CHAR_PRESSED_QUEUE) // { // // Add character to the queue // CORE.Input.Keyboard.charPressedQueue[CORE.Input.Keyboard.charPressedQueueCount] = key; // CORE.Input.Keyboard.charPressedQueueCount++; // } //} // //// GLFW3 Mouse Button Callback, runs on mouse button pressed //static void MouseButtonCallback(GLFWwindow *window, int button, int action, int mods) //{ // // WARNING: GLFW could only return GLFW_PRESS (1) or GLFW_RELEASE (0) for now, // // but future releases may add more actions (i.e. GLFW_REPEAT) // CORE.Input.Mouse.currentButtonState[button] = action; // //#if defined(SUPPORT_GESTURES_SYSTEM) && defined(SUPPORT_MOUSE_GESTURES) // PLATFORM_DESKTOP // // Process mouse events as touches to be able to use mouse-gestures // GestureEvent gestureEvent = { 0 }; // // // Register touch actions // if ((CORE.Input.Mouse.currentButtonState[button] == 1) && (CORE.Input.Mouse.previousButtonState[button] == 0)) gestureEvent.touchAction = TOUCH_ACTION_DOWN; // else if ((CORE.Input.Mouse.currentButtonState[button] == 0) && (CORE.Input.Mouse.previousButtonState[button] == 1)) gestureEvent.touchAction = TOUCH_ACTION_UP; // // // NOTE: TOUCH_ACTION_MOVE event is registered in MouseCursorPosCallback() // // // Assign a pointer ID // gestureEvent.pointId[0] = 0; // // // Register touch points count // gestureEvent.pointCount = 1; // // // Register touch points position, only one point registered // gestureEvent.position[0] = GetMousePosition(); // // // Normalize gestureEvent.position[0] for CORE.Window.screen.width and CORE.Window.screen.height // gestureEvent.position[0].x /= (float)GetScreenWidth(); // gestureEvent.position[0].y /= (float)GetScreenHeight(); // // // Gesture data is sent to gestures-system for processing //#if defined(PLATFORM_WEB) // // Prevent calling ProcessGestureEvent() when Emscripten is present and there's a touch gesture, so EmscriptenTouchCallback() can handle it itself // if (GetMouseX() != 0 || GetMouseY() != 0) ProcessGestureEvent(gestureEvent); //#else // ProcessGestureEvent(gestureEvent); //#endif // //#endif //} // //// GLFW3 Cursor Position Callback, runs on mouse move //static void MouseCursorPosCallback(GLFWwindow *window, double x, double y) //{ // CORE.Input.Mouse.currentPosition.x = (float)x; // CORE.Input.Mouse.currentPosition.y = (float)y; // CORE.Input.Touch.position[0] = CORE.Input.Mouse.currentPosition; // //#if defined(SUPPORT_GESTURES_SYSTEM) && defined(SUPPORT_MOUSE_GESTURES) // PLATFORM_DESKTOP // // Process mouse events as touches to be able to use mouse-gestures // GestureEvent gestureEvent = { 0 }; // // gestureEvent.touchAction = TOUCH_ACTION_MOVE; // // // Assign a pointer ID // gestureEvent.pointId[0] = 0; // // // Register touch points count // gestureEvent.pointCount = 1; // // // Register touch points position, only one point registered // gestureEvent.position[0] = CORE.Input.Touch.position[0]; // // // Normalize gestureEvent.position[0] for CORE.Window.screen.width and CORE.Window.screen.height // gestureEvent.position[0].x /= (float)GetScreenWidth(); // gestureEvent.position[0].y /= (float)GetScreenHeight(); // // // Gesture data is sent to gestures-system for processing // ProcessGestureEvent(gestureEvent); //#endif //} // //// GLFW3 Scrolling Callback, runs on mouse wheel //static void MouseScrollCallback(GLFWwindow *window, double xoffset, double yoffset) //{ // CORE.Input.Mouse.currentWheelMove = (Vector2){ (float)xoffset, (float)yoffset }; //} // //// GLFW3 CursorEnter Callback, when cursor enters the window //static void CursorEnterCallback(GLFWwindow *window, int enter) //{ // if (enter == true) CORE.Input.Mouse.cursorOnScreen = true; // else CORE.Input.Mouse.cursorOnScreen = false; //} // //// GLFW3 Window Drop Callback, runs when drop files into window //static void WindowDropCallback(GLFWwindow *window, int count, const char **paths) //{ // if (count > 0) // { // // In case previous dropped filepaths have not been freed, we free them // if (CORE.Window.dropFileCount > 0) // { // for (unsigned int i = 0; i < CORE.Window.dropFileCount; i++) RL_FREE(CORE.Window.dropFilepaths[i]); // // RL_FREE(CORE.Window.dropFilepaths); // // CORE.Window.dropFileCount = 0; // CORE.Window.dropFilepaths = NULL; // } // // // WARNING: Paths are freed by GLFW when the callback returns, we must keep an internal copy // CORE.Window.dropFileCount = count; // CORE.Window.dropFilepaths = (char **)RL_CALLOC(CORE.Window.dropFileCount, sizeof(char *)); // // for (unsigned int i = 0; i < CORE.Window.dropFileCount; i++) // { // CORE.Window.dropFilepaths[i] = (char *)RL_CALLOC(MAX_FILEPATH_LENGTH, sizeof(char)); // strcpy(CORE.Window.dropFilepaths[i], paths[i]); // } // } //} //#endif #if defined(PLATFORM_DRM) // Initialize Keyboard system (using standard input) static void InitKeyboard(void) { // NOTE: We read directly from Standard Input (stdin) - STDIN_FILENO file descriptor, // Reading directly from stdin will give chars already key-mapped by kernel to ASCII or UNICODE // Save terminal keyboard settings tcgetattr(STDIN_FILENO, &CORE.Input.Keyboard.defaultSettings); // Reconfigure terminal with new settings struct termios keyboardNewSettings = { 0 }; keyboardNewSettings = CORE.Input.Keyboard.defaultSettings; // New terminal settings for keyboard: turn off buffering (non-canonical mode), echo and key processing // NOTE: ISIG controls if ^C and ^Z generate break signals or not keyboardNewSettings.c_lflag &= ~(ICANON | ECHO | ISIG); //keyboardNewSettings.c_iflag &= ~(ISTRIP | INLCR | ICRNL | IGNCR | IXON | IXOFF); keyboardNewSettings.c_cc[VMIN] = 1; keyboardNewSettings.c_cc[VTIME] = 0; // Set new keyboard settings (change occurs immediately) tcsetattr(STDIN_FILENO, TCSANOW, &keyboardNewSettings); // Save old keyboard mode to restore it at the end CORE.Input.Keyboard.defaultFileFlags = fcntl(STDIN_FILENO, F_GETFL, 0); // F_GETFL: Get the file access mode and the file status flags fcntl(STDIN_FILENO, F_SETFL, CORE.Input.Keyboard.defaultFileFlags | O_NONBLOCK); // F_SETFL: Set the file status flags to the value specified // NOTE: If ioctl() returns -1, it means the call failed for some reason (error code set in errno) int result = ioctl(STDIN_FILENO, KDGKBMODE, &CORE.Input.Keyboard.defaultMode); // In case of failure, it could mean a remote keyboard is used (SSH) if (result < 0) TRACELOG(LOG_WARNING, "RPI: Failed to change keyboard mode, an SSH keyboard is probably used"); else { // Reconfigure keyboard mode to get: // - scancodes (K_RAW) // - keycodes (K_MEDIUMRAW) // - ASCII chars (K_XLATE) // - UNICODE chars (K_UNICODE) ioctl(STDIN_FILENO, KDSKBMODE, K_XLATE); // ASCII chars } // Register keyboard restore when program finishes atexit(RestoreKeyboard); } // Restore default keyboard input static void RestoreKeyboard(void) { // Reset to default keyboard settings tcsetattr(STDIN_FILENO, TCSANOW, &CORE.Input.Keyboard.defaultSettings); // Reconfigure keyboard to default mode fcntl(STDIN_FILENO, F_SETFL, CORE.Input.Keyboard.defaultFileFlags); ioctl(STDIN_FILENO, KDSKBMODE, CORE.Input.Keyboard.defaultMode); } #if defined(SUPPORT_SSH_KEYBOARD_RPI) // Process keyboard inputs static void ProcessKeyboard(void) { #define MAX_KEYBUFFER_SIZE 32 // Max size in bytes to read // Keyboard input polling (fill keys[256] array with status) int bufferByteCount = 0; // Bytes available on the buffer char keysBuffer[MAX_KEYBUFFER_SIZE] = { 0 }; // Max keys to be read at a time // Read availables keycodes from stdin bufferByteCount = read(STDIN_FILENO, keysBuffer, MAX_KEYBUFFER_SIZE); // POSIX system call // Reset pressed keys array (it will be filled below) for (int i = 0; i < MAX_KEYBOARD_KEYS; i++) { CORE.Input.Keyboard.currentKeyState[i] = 0; CORE.Input.Keyboard.keyRepeatInFrame[i] = 0; } // Fill all read bytes (looking for keys) for (int i = 0; i < bufferByteCount; i++) { // NOTE: If (key == 0x1b), depending on next key, it could be a special keymap code! // Up -> 1b 5b 41 / Left -> 1b 5b 44 / Right -> 1b 5b 43 / Down -> 1b 5b 42 if (keysBuffer[i] == 0x1b) { // Check if ESCAPE key has been pressed to stop program if (bufferByteCount == 1) CORE.Input.Keyboard.currentKeyState[CORE.Input.Keyboard.exitKey] = 1; else { if (keysBuffer[i + 1] == 0x5b) // Special function key { if ((keysBuffer[i + 2] == 0x5b) || (keysBuffer[i + 2] == 0x31) || (keysBuffer[i + 2] == 0x32)) { // Process special function keys (F1 - F12) switch (keysBuffer[i + 3]) { case 0x41: CORE.Input.Keyboard.currentKeyState[290] = 1; break; // raylib KEY_F1 case 0x42: CORE.Input.Keyboard.currentKeyState[291] = 1; break; // raylib KEY_F2 case 0x43: CORE.Input.Keyboard.currentKeyState[292] = 1; break; // raylib KEY_F3 case 0x44: CORE.Input.Keyboard.currentKeyState[293] = 1; break; // raylib KEY_F4 case 0x45: CORE.Input.Keyboard.currentKeyState[294] = 1; break; // raylib KEY_F5 case 0x37: CORE.Input.Keyboard.currentKeyState[295] = 1; break; // raylib KEY_F6 case 0x38: CORE.Input.Keyboard.currentKeyState[296] = 1; break; // raylib KEY_F7 case 0x39: CORE.Input.Keyboard.currentKeyState[297] = 1; break; // raylib KEY_F8 case 0x30: CORE.Input.Keyboard.currentKeyState[298] = 1; break; // raylib KEY_F9 case 0x31: CORE.Input.Keyboard.currentKeyState[299] = 1; break; // raylib KEY_F10 case 0x33: CORE.Input.Keyboard.currentKeyState[300] = 1; break; // raylib KEY_F11 case 0x34: CORE.Input.Keyboard.currentKeyState[301] = 1; break; // raylib KEY_F12 default: break; } if (keysBuffer[i + 2] == 0x5b) i += 4; else if ((keysBuffer[i + 2] == 0x31) || (keysBuffer[i + 2] == 0x32)) i += 5; } else { switch (keysBuffer[i + 2]) { case 0x41: CORE.Input.Keyboard.currentKeyState[265] = 1; break; // raylib KEY_UP case 0x42: CORE.Input.Keyboard.currentKeyState[264] = 1; break; // raylib KEY_DOWN case 0x43: CORE.Input.Keyboard.currentKeyState[262] = 1; break; // raylib KEY_RIGHT case 0x44: CORE.Input.Keyboard.currentKeyState[263] = 1; break; // raylib KEY_LEFT default: break; } i += 3; // Jump to next key } // NOTE: Some keys are not directly keymapped (CTRL, ALT, SHIFT) } } } else if (keysBuffer[i] == 0x0a) // raylib KEY_ENTER (don't mix with KEY_*) { CORE.Input.Keyboard.currentKeyState[257] = 1; CORE.Input.Keyboard.keyPressedQueue[CORE.Input.Keyboard.keyPressedQueueCount] = 257; // Add keys pressed into queue CORE.Input.Keyboard.keyPressedQueueCount++; } else if (keysBuffer[i] == 0x7f) // raylib KEY_BACKSPACE { CORE.Input.Keyboard.currentKeyState[259] = 1; CORE.Input.Keyboard.keyPressedQueue[CORE.Input.Keyboard.keyPressedQueueCount] = 257; // Add keys pressed into queue CORE.Input.Keyboard.keyPressedQueueCount++; } else { // Translate lowercase a-z letters to A-Z if ((keysBuffer[i] >= 97) && (keysBuffer[i] <= 122)) { CORE.Input.Keyboard.currentKeyState[(int)keysBuffer[i] - 32] = 1; } else CORE.Input.Keyboard.currentKeyState[(int)keysBuffer[i]] = 1; CORE.Input.Keyboard.keyPressedQueue[CORE.Input.Keyboard.keyPressedQueueCount] = keysBuffer[i]; // Add keys pressed into queue CORE.Input.Keyboard.keyPressedQueueCount++; } } // Check exit key (same functionality as GLFW3 KeyCallback()) if (CORE.Input.Keyboard.currentKeyState[CORE.Input.Keyboard.exitKey] == 1) CORE.Window.shouldClose = true; #if defined(SUPPORT_SCREEN_CAPTURE) // Check screen capture key (raylib key: KEY_F12) if (CORE.Input.Keyboard.currentKeyState[301] == 1) { TakeScreenshot(TextFormat("screenshot%03i.png", screenshotCounter)); screenshotCounter++; } #endif } #endif // SUPPORT_SSH_KEYBOARD_RPI // Initialise user input from evdev(/dev/input/event) this means mouse, keyboard or gamepad devices static void InitEvdevInput(void) { char path[MAX_FILEPATH_LENGTH] = { 0 }; DIR *directory = NULL; struct dirent *entity = NULL; // Initialise keyboard file descriptor CORE.Input.Keyboard.fd = -1; // Reset variables for (int i = 0; i < MAX_TOUCH_POINTS; ++i) { CORE.Input.Touch.position[i].x = -1; CORE.Input.Touch.position[i].y = -1; } // Reset keyboard key state for (int i = 0; i < MAX_KEYBOARD_KEYS; i++) { CORE.Input.Keyboard.currentKeyState[i] = 0; CORE.Input.Keyboard.keyRepeatInFrame[i] = 0; } // Open the linux directory of "/dev/input" directory = opendir(DEFAULT_EVDEV_PATH); if (directory) { while ((entity = readdir(directory)) != NULL) { if ((strncmp("event", entity->d_name, strlen("event")) == 0) || // Search for devices named "event*" (strncmp("mouse", entity->d_name, strlen("mouse")) == 0)) // Search for devices named "mouse*" { sprintf(path, "%s%s", DEFAULT_EVDEV_PATH, entity->d_name); ConfigureEvdevDevice(path); // Configure the device if appropriate } } closedir(directory); } else TRACELOG(LOG_WARNING, "RPI: Failed to open linux event directory: %s", DEFAULT_EVDEV_PATH); } // Identifies a input device and configures it for use if appropriate static void ConfigureEvdevDevice(char *device) { #define BITS_PER_LONG (8*sizeof(long)) #define NBITS(x) ((((x) - 1)/BITS_PER_LONG) + 1) #define OFF(x) ((x)%BITS_PER_LONG) #define BIT(x) (1UL<> OFF(bit)) & 1) struct input_absinfo absinfo = { 0 }; unsigned long evBits[NBITS(EV_MAX)] = { 0 }; unsigned long absBits[NBITS(ABS_MAX)] = { 0 }; unsigned long relBits[NBITS(REL_MAX)] = { 0 }; unsigned long keyBits[NBITS(KEY_MAX)] = { 0 }; bool hasAbs = false; bool hasRel = false; bool hasAbsMulti = false; int freeWorkerId = -1; int fd = -1; InputEventWorker *worker = NULL; // Open the device and allocate worker //------------------------------------------------------------------------------------------------------- // Find a free spot in the workers array for (int i = 0; i < sizeof(CORE.Input.eventWorker)/sizeof(InputEventWorker); ++i) { if (CORE.Input.eventWorker[i].threadId == 0) { freeWorkerId = i; break; } } // Select the free worker from array if (freeWorkerId >= 0) { worker = &(CORE.Input.eventWorker[freeWorkerId]); // Grab a pointer to the worker memset(worker, 0, sizeof(InputEventWorker)); // Clear the worker } else { TRACELOG(LOG_WARNING, "RPI: Failed to create input device thread for %s, out of worker slots", device); return; } // Open the device fd = open(device, O_RDONLY | O_NONBLOCK); if (fd < 0) { TRACELOG(LOG_WARNING, "RPI: Failed to open input device: %s", device); return; } worker->fd = fd; // Grab number on the end of the devices name "event" int devNum = 0; char *ptrDevName = strrchr(device, 't'); worker->eventNum = -1; if (ptrDevName != NULL) { if (sscanf(ptrDevName, "t%d", &devNum) == 1) worker->eventNum = devNum; } else worker->eventNum = 0; // TODO: HACK: Grab number for mouse0 device! // At this point we have a connection to the device, but we don't yet know what the device is. // It could be many things, even as simple as a power button... //------------------------------------------------------------------------------------------------------- // Identify the device //------------------------------------------------------------------------------------------------------- ioctl(fd, EVIOCGBIT(0, sizeof(evBits)), evBits); // Read a bitfield of the available device properties // Check for absolute input devices if (TEST_BIT(evBits, EV_ABS)) { ioctl(fd, EVIOCGBIT(EV_ABS, sizeof(absBits)), absBits); // Check for absolute movement support (usually touchscreens, but also joysticks) if (TEST_BIT(absBits, ABS_X) && TEST_BIT(absBits, ABS_Y)) { hasAbs = true; // Get the scaling values ioctl(fd, EVIOCGABS(ABS_X), &absinfo); worker->absRange.x = absinfo.minimum; worker->absRange.width = absinfo.maximum - absinfo.minimum; ioctl(fd, EVIOCGABS(ABS_Y), &absinfo); worker->absRange.y = absinfo.minimum; worker->absRange.height = absinfo.maximum - absinfo.minimum; } // Check for multiple absolute movement support (usually multitouch touchscreens) if (TEST_BIT(absBits, ABS_MT_POSITION_X) && TEST_BIT(absBits, ABS_MT_POSITION_Y)) { hasAbsMulti = true; // Get the scaling values ioctl(fd, EVIOCGABS(ABS_X), &absinfo); worker->absRange.x = absinfo.minimum; worker->absRange.width = absinfo.maximum - absinfo.minimum; ioctl(fd, EVIOCGABS(ABS_Y), &absinfo); worker->absRange.y = absinfo.minimum; worker->absRange.height = absinfo.maximum - absinfo.minimum; } } // Check for relative movement support (usually mouse) if (TEST_BIT(evBits, EV_REL)) { ioctl(fd, EVIOCGBIT(EV_REL, sizeof(relBits)), relBits); if (TEST_BIT(relBits, REL_X) && TEST_BIT(relBits, REL_Y)) hasRel = true; } // Check for button support to determine the device type(usually on all input devices) if (TEST_BIT(evBits, EV_KEY)) { ioctl(fd, EVIOCGBIT(EV_KEY, sizeof(keyBits)), keyBits); if (hasAbs || hasAbsMulti) { if (TEST_BIT(keyBits, BTN_TOUCH)) worker->isTouch = true; // This is a touchscreen if (TEST_BIT(keyBits, BTN_TOOL_FINGER)) worker->isTouch = true; // This is a drawing tablet if (TEST_BIT(keyBits, BTN_TOOL_PEN)) worker->isTouch = true; // This is a drawing tablet if (TEST_BIT(keyBits, BTN_STYLUS)) worker->isTouch = true; // This is a drawing tablet if (worker->isTouch || hasAbsMulti) worker->isMultitouch = true; // This is a multitouch capable device } if (hasRel) { if (TEST_BIT(keyBits, BTN_LEFT)) worker->isMouse = true; // This is a mouse if (TEST_BIT(keyBits, BTN_RIGHT)) worker->isMouse = true; // This is a mouse } if (TEST_BIT(keyBits, BTN_A)) worker->isGamepad = true; // This is a gamepad if (TEST_BIT(keyBits, BTN_TRIGGER)) worker->isGamepad = true; // This is a gamepad if (TEST_BIT(keyBits, BTN_START)) worker->isGamepad = true; // This is a gamepad if (TEST_BIT(keyBits, BTN_TL)) worker->isGamepad = true; // This is a gamepad if (TEST_BIT(keyBits, BTN_TL)) worker->isGamepad = true; // This is a gamepad if (TEST_BIT(keyBits, KEY_SPACE)) worker->isKeyboard = true; // This is a keyboard } //------------------------------------------------------------------------------------------------------- // Decide what to do with the device //------------------------------------------------------------------------------------------------------- if (worker->isKeyboard && (CORE.Input.Keyboard.fd == -1)) { // Use the first keyboard encountered. This assumes that a device that says it's a keyboard is just a // keyboard. The keyboard is polled synchronously, whereas other input devices are polled in separate // threads so that they don't drop events when the frame rate is slow. TRACELOG(LOG_INFO, "RPI: Opening keyboard device: %s", device); CORE.Input.Keyboard.fd = worker->fd; } else if (worker->isTouch || worker->isMouse) { // Looks like an interesting device TRACELOG(LOG_INFO, "RPI: Opening input device: %s (%s%s%s%s)", device, worker->isMouse? "mouse " : "", worker->isMultitouch? "multitouch " : "", worker->isTouch? "touchscreen " : "", worker->isGamepad? "gamepad " : ""); // Create a thread for this device int error = pthread_create(&worker->threadId, NULL, &EventThread, (void *)worker); if (error != 0) { TRACELOG(LOG_WARNING, "RPI: Failed to create input device thread: %s (error: %d)", device, error); worker->threadId = 0; close(fd); } #if defined(USE_LAST_TOUCH_DEVICE) // Find touchscreen with the highest index int maxTouchNumber = -1; for (int i = 0; i < sizeof(CORE.Input.eventWorker)/sizeof(InputEventWorker); ++i) { if (CORE.Input.eventWorker[i].isTouch && (CORE.Input.eventWorker[i].eventNum > maxTouchNumber)) maxTouchNumber = CORE.Input.eventWorker[i].eventNum; } // Find touchscreens with lower indexes for (int i = 0; i < sizeof(CORE.Input.eventWorker)/sizeof(InputEventWorker); ++i) { if (CORE.Input.eventWorker[i].isTouch && (CORE.Input.eventWorker[i].eventNum < maxTouchNumber)) { if (CORE.Input.eventWorker[i].threadId != 0) { TRACELOG(LOG_WARNING, "RPI: Found duplicate touchscreen, killing touchscreen on event: %d", i); pthread_cancel(CORE.Input.eventWorker[i].threadId); close(CORE.Input.eventWorker[i].fd); } } } #endif } else close(fd); // We are not interested in this device //------------------------------------------------------------------------------------------------------- } static void PollKeyboardEvents(void) { // Scancode to keycode mapping for US keyboards // TODO: Replace this with a keymap from the X11 to get the correct regional map for the keyboard: // Currently non US keyboards will have the wrong mapping for some keys static const int keymapUS[] = { 0, 256, 49, 50, 51, 52, 53, 54, 55, 56, 57, 48, 45, 61, 259, 258, 81, 87, 69, 82, 84, 89, 85, 73, 79, 80, 91, 93, 257, 341, 65, 83, 68, 70, 71, 72, 74, 75, 76, 59, 39, 96, 340, 92, 90, 88, 67, 86, 66, 78, 77, 44, 46, 47, 344, 332, 342, 32, 280, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 282, 281, 327, 328, 329, 333, 324, 325, 326, 334, 321, 322, 323, 320, 330, 0, 85, 86, 300, 301, 89, 90, 91, 92, 93, 94, 95, 335, 345, 331, 283, 346, 101, 268, 265, 266, 263, 262, 269, 264, 267, 260, 261, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 347, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 0, 0, 0, 0, 0, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 0, 0, 0, 0, 0, 0, 0 }; int fd = CORE.Input.Keyboard.fd; if (fd == -1) return; struct input_event event = { 0 }; int keycode = -1; // Try to read data from the keyboard and only continue if successful while (read(fd, &event, sizeof(event)) == (int)sizeof(event)) { // Button parsing if (event.type == EV_KEY) { #if defined(SUPPORT_SSH_KEYBOARD_RPI) // Change keyboard mode to events CORE.Input.Keyboard.evtMode = true; #endif // Keyboard button parsing if ((event.code >= 1) && (event.code <= 255)) //Keyboard keys appear for codes 1 to 255 { keycode = keymapUS[event.code & 0xFF]; // The code we get is a scancode so we look up the appropriate keycode // Make sure we got a valid keycode if ((keycode > 0) && (keycode < sizeof(CORE.Input.Keyboard.currentKeyState))) { // WARNING: https://www.kernel.org/doc/Documentation/input/input.txt // Event interface: 'value' is the value the event carries. Either a relative change for EV_REL, // absolute new value for EV_ABS (joysticks ...), or 0 for EV_KEY for release, 1 for keypress and 2 for autorepeat CORE.Input.Keyboard.currentKeyState[keycode] = (event.value >= 1)? 1 : 0; if (event.value >= 1) { CORE.Input.Keyboard.keyPressedQueue[CORE.Input.Keyboard.keyPressedQueueCount] = keycode; // Register last key pressed CORE.Input.Keyboard.keyPressedQueueCount++; } #if defined(SUPPORT_SCREEN_CAPTURE) // Check screen capture key (raylib key: KEY_F12) if (CORE.Input.Keyboard.currentKeyState[301] == 1) { TakeScreenshot(TextFormat("screenshot%03i.png", screenshotCounter)); screenshotCounter++; } #endif if (CORE.Input.Keyboard.currentKeyState[CORE.Input.Keyboard.exitKey] == 1) CORE.Window.shouldClose = true; TRACELOGD("RPI: KEY_%s ScanCode: %4i KeyCode: %4i", event.value == 0 ? "UP":"DOWN", event.code, keycode); } } } } } // Input device events reading thread static void *EventThread(void *arg) { struct input_event event = { 0 }; InputEventWorker *worker = (InputEventWorker *)arg; int touchAction = -1; // 0-TOUCH_ACTION_UP, 1-TOUCH_ACTION_DOWN, 2-TOUCH_ACTION_MOVE bool gestureUpdate = false; // Flag to note gestures require to update while (!CORE.Window.shouldClose) { // Try to read data from the device and only continue if successful while (read(worker->fd, &event, sizeof(event)) == (int)sizeof(event)) { // Relative movement parsing if (event.type == EV_REL) { if (event.code == REL_X) { CORE.Input.Mouse.currentPosition.x += event.value; CORE.Input.Touch.position[0].x = CORE.Input.Mouse.currentPosition.x; touchAction = 2; // TOUCH_ACTION_MOVE gestureUpdate = true; } if (event.code == REL_Y) { CORE.Input.Mouse.currentPosition.y += event.value; CORE.Input.Touch.position[0].y = CORE.Input.Mouse.currentPosition.y; touchAction = 2; // TOUCH_ACTION_MOVE gestureUpdate = true; } if (event.code == REL_WHEEL) CORE.Input.Mouse.eventWheelMove.y += event.value; } // Absolute movement parsing if (event.type == EV_ABS) { // Basic movement if (event.code == ABS_X) { CORE.Input.Mouse.currentPosition.x = (event.value - worker->absRange.x)*CORE.Window.screen.width/worker->absRange.width; // Scale according to absRange CORE.Input.Touch.position[0].x = (event.value - worker->absRange.x)*CORE.Window.screen.width/worker->absRange.width; // Scale according to absRange touchAction = 2; // TOUCH_ACTION_MOVE gestureUpdate = true; } if (event.code == ABS_Y) { CORE.Input.Mouse.currentPosition.y = (event.value - worker->absRange.y)*CORE.Window.screen.height/worker->absRange.height; // Scale according to absRange CORE.Input.Touch.position[0].y = (event.value - worker->absRange.y)*CORE.Window.screen.height/worker->absRange.height; // Scale according to absRange touchAction = 2; // TOUCH_ACTION_MOVE gestureUpdate = true; } // Multitouch movement if (event.code == ABS_MT_SLOT) worker->touchSlot = event.value; // Remember the slot number for the folowing events if (event.code == ABS_MT_POSITION_X) { if (worker->touchSlot < MAX_TOUCH_POINTS) CORE.Input.Touch.position[worker->touchSlot].x = (event.value - worker->absRange.x)*CORE.Window.screen.width/worker->absRange.width; // Scale according to absRange } if (event.code == ABS_MT_POSITION_Y) { if (worker->touchSlot < MAX_TOUCH_POINTS) CORE.Input.Touch.position[worker->touchSlot].y = (event.value - worker->absRange.y)*CORE.Window.screen.height/worker->absRange.height; // Scale according to absRange } if (event.code == ABS_MT_TRACKING_ID) { if ((event.value < 0) && (worker->touchSlot < MAX_TOUCH_POINTS)) { // Touch has ended for this point CORE.Input.Touch.position[worker->touchSlot].x = -1; CORE.Input.Touch.position[worker->touchSlot].y = -1; } } // Touchscreen tap if (event.code == ABS_PRESSURE) { int previousMouseLeftButtonState = CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_LEFT]; if (!event.value && previousMouseLeftButtonState) { CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_LEFT] = 0; touchAction = 0; // TOUCH_ACTION_UP gestureUpdate = true; } if (event.value && !previousMouseLeftButtonState) { CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_LEFT] = 1; touchAction = 1; // TOUCH_ACTION_DOWN gestureUpdate = true; } } } // Button parsing if (event.type == EV_KEY) { // Mouse button parsing if ((event.code == BTN_TOUCH) || (event.code == BTN_LEFT)) { CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_LEFT] = event.value; if (event.value > 0) touchAction = 1; // TOUCH_ACTION_DOWN else touchAction = 0; // TOUCH_ACTION_UP gestureUpdate = true; } if (event.code == BTN_RIGHT) CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_RIGHT] = event.value; if (event.code == BTN_MIDDLE) CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_MIDDLE] = event.value; if (event.code == BTN_SIDE) CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_SIDE] = event.value; if (event.code == BTN_EXTRA) CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_EXTRA] = event.value; if (event.code == BTN_FORWARD) CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_FORWARD] = event.value; if (event.code == BTN_BACK) CORE.Input.Mouse.currentButtonStateEvdev[MOUSE_BUTTON_BACK] = event.value; } // Screen confinement if (!CORE.Input.Mouse.cursorHidden) { if (CORE.Input.Mouse.currentPosition.x < 0) CORE.Input.Mouse.currentPosition.x = 0; if (CORE.Input.Mouse.currentPosition.x > CORE.Window.screen.width/CORE.Input.Mouse.scale.x) CORE.Input.Mouse.currentPosition.x = CORE.Window.screen.width/CORE.Input.Mouse.scale.x; if (CORE.Input.Mouse.currentPosition.y < 0) CORE.Input.Mouse.currentPosition.y = 0; if (CORE.Input.Mouse.currentPosition.y > CORE.Window.screen.height/CORE.Input.Mouse.scale.y) CORE.Input.Mouse.currentPosition.y = CORE.Window.screen.height/CORE.Input.Mouse.scale.y; } // Update touch point count CORE.Input.Touch.pointCount = 0; for (int i = 0; i < MAX_TOUCH_POINTS; i++) { if (CORE.Input.Touch.position[i].x >= 0) CORE.Input.Touch.pointCount++; } #if defined(SUPPORT_GESTURES_SYSTEM) // PLATFORM_DRM if (gestureUpdate) { GestureEvent gestureEvent = { 0 }; gestureEvent.touchAction = touchAction; gestureEvent.pointCount = CORE.Input.Touch.pointCount; for (int i = 0; i < MAX_TOUCH_POINTS; i++) { gestureEvent.pointId[i] = i; gestureEvent.position[i] = CORE.Input.Touch.position[i]; } ProcessGestureEvent(gestureEvent); } #endif } WaitTime(0.005); // Sleep for 5ms to avoid hogging CPU time } close(worker->fd); return NULL; } // Initialize gamepad system static void InitGamepad(void) { char gamepadDev[128] = { 0 }; for (int i = 0; i < MAX_GAMEPADS; i++) { sprintf(gamepadDev, "%s%i", DEFAULT_GAMEPAD_DEV, i); if ((CORE.Input.Gamepad.streamId[i] = open(gamepadDev, O_RDONLY | O_NONBLOCK)) < 0) { // NOTE: Only show message for first gamepad if (i == 0) TRACELOG(LOG_WARNING, "RPI: Failed to open Gamepad device, no gamepad available"); } else { CORE.Input.Gamepad.ready[i] = true; // NOTE: Only create one thread if (i == 0) { int error = pthread_create(&CORE.Input.Gamepad.threadId, NULL, &GamepadThread, NULL); if (error != 0) TRACELOG(LOG_WARNING, "RPI: Failed to create gamepad input event thread"); else TRACELOG(LOG_INFO, "RPI: Gamepad device initialized successfully"); } } } } // Process Gamepad (/dev/input/js0) static void *GamepadThread(void *arg) { #define JS_EVENT_BUTTON 0x01 // Button pressed/released #define JS_EVENT_AXIS 0x02 // Joystick axis moved #define JS_EVENT_INIT 0x80 // Initial state of device struct js_event { unsigned int time; // event timestamp in milliseconds short value; // event value unsigned char type; // event type unsigned char number; // event axis/button number }; // Read gamepad event struct js_event gamepadEvent = { 0 }; while (!CORE.Window.shouldClose) { for (int i = 0; i < MAX_GAMEPADS; i++) { if (read(CORE.Input.Gamepad.streamId[i], &gamepadEvent, sizeof(struct js_event)) == (int)sizeof(struct js_event)) { gamepadEvent.type &= ~JS_EVENT_INIT; // Ignore synthetic events // Process gamepad events by type if (gamepadEvent.type == JS_EVENT_BUTTON) { //TRACELOG(LOG_WARNING, "RPI: Gamepad button: %i, value: %i", gamepadEvent.number, gamepadEvent.value); if (gamepadEvent.number < MAX_GAMEPAD_BUTTONS) { // 1 - button pressed, 0 - button released CORE.Input.Gamepad.currentButtonState[i][gamepadEvent.number] = (int)gamepadEvent.value; if ((int)gamepadEvent.value == 1) CORE.Input.Gamepad.lastButtonPressed = gamepadEvent.number; else CORE.Input.Gamepad.lastButtonPressed = 0; // GAMEPAD_BUTTON_UNKNOWN } } else if (gamepadEvent.type == JS_EVENT_AXIS) { //TRACELOG(LOG_WARNING, "RPI: Gamepad axis: %i, value: %i", gamepadEvent.number, gamepadEvent.value); if (gamepadEvent.number < MAX_GAMEPAD_AXIS) { // NOTE: Scaling of gamepadEvent.value to get values between -1..1 CORE.Input.Gamepad.axisState[i][gamepadEvent.number] = (float)gamepadEvent.value/32768; } } } else WaitTime(0.001); // Sleep for 1 ms to avoid hogging CPU time } } return NULL; } #endif // PLATFORM_DRM #if defined(PLATFORM_DRM) // Search matching DRM mode in connector's mode list static int FindMatchingConnectorMode(const drmModeConnector *connector, const drmModeModeInfo *mode) { if (NULL == connector) return -1; if (NULL == mode) return -1; // safe bitwise comparison of two modes #define BINCMP(a, b) memcmp((a), (b), (sizeof(a) < sizeof(b)) ? sizeof(a) : sizeof(b)) for (size_t i = 0; i < connector->count_modes; i++) { TRACELOG(LOG_TRACE, "DISPLAY: DRM mode: %d %ux%u@%u %s", i, connector->modes[i].hdisplay, connector->modes[i].vdisplay, connector->modes[i].vrefresh, (connector->modes[i].flags & DRM_MODE_FLAG_INTERLACE) ? "interlaced" : "progressive"); if (0 == BINCMP(&CORE.Window.crtc->mode, &CORE.Window.connector->modes[i])) return i; } return -1; #undef BINCMP } // Search exactly matching DRM connector mode in connector's list static int FindExactConnectorMode(const drmModeConnector *connector, uint width, uint height, uint fps, bool allowInterlaced) { TRACELOG(LOG_TRACE, "DISPLAY: Searching exact connector mode for %ux%u@%u, selecting an interlaced mode is allowed: %s", width, height, fps, allowInterlaced ? "yes" : "no"); if (NULL == connector) return -1; for (int i = 0; i < CORE.Window.connector->count_modes; i++) { const drmModeModeInfo *const mode = &CORE.Window.connector->modes[i]; TRACELOG(LOG_TRACE, "DISPLAY: DRM Mode %d %ux%u@%u %s", i, mode->hdisplay, mode->vdisplay, mode->vrefresh, (mode->flags & DRM_MODE_FLAG_INTERLACE) ? "interlaced" : "progressive"); if ((mode->flags & DRM_MODE_FLAG_INTERLACE) && (!allowInterlaced)) continue; if ((mode->hdisplay == width) && (mode->vdisplay == height) && (mode->vrefresh == fps)) return i; } TRACELOG(LOG_TRACE, "DISPLAY: No DRM exact matching mode found"); return -1; } // Search the nearest matching DRM connector mode in connector's list static int FindNearestConnectorMode(const drmModeConnector *connector, uint width, uint height, uint fps, bool allowInterlaced) { TRACELOG(LOG_TRACE, "DISPLAY: Searching nearest connector mode for %ux%u@%u, selecting an interlaced mode is allowed: %s", width, height, fps, allowInterlaced ? "yes" : "no"); if (NULL == connector) return -1; int nearestIndex = -1; for (int i = 0; i < CORE.Window.connector->count_modes; i++) { const drmModeModeInfo *const mode = &CORE.Window.connector->modes[i]; TRACELOG(LOG_TRACE, "DISPLAY: DRM mode: %d %ux%u@%u %s", i, mode->hdisplay, mode->vdisplay, mode->vrefresh, (mode->flags & DRM_MODE_FLAG_INTERLACE) ? "interlaced" : "progressive"); if ((mode->hdisplay < width) || (mode->vdisplay < height)) { TRACELOG(LOG_TRACE, "DISPLAY: DRM mode is too small"); continue; } if ((mode->flags & DRM_MODE_FLAG_INTERLACE) && (!allowInterlaced)) { TRACELOG(LOG_TRACE, "DISPLAY: DRM shouldn't choose an interlaced mode"); continue; } if (nearestIndex < 0) { nearestIndex = i; continue; } const int widthDiff = abs(mode->hdisplay - width); const int heightDiff = abs(mode->vdisplay - height); const int fpsDiff = abs(mode->vrefresh - fps); const int nearestWidthDiff = abs(CORE.Window.connector->modes[nearestIndex].hdisplay - width); const int nearestHeightDiff = abs(CORE.Window.connector->modes[nearestIndex].vdisplay - height); const int nearestFpsDiff = abs(CORE.Window.connector->modes[nearestIndex].vrefresh - fps); if ((widthDiff < nearestWidthDiff) || (heightDiff < nearestHeightDiff) || (fpsDiff < nearestFpsDiff)) { nearestIndex = i; } } return nearestIndex; } #endif #if defined(SUPPORT_EVENTS_AUTOMATION) // NOTE: Loading happens over AutomationEvent *events // TODO: This system should probably be redesigned static void LoadAutomationEvents(const char *fileName) { // Load events file (binary) /* FILE *repFile = fopen(fileName, "rb"); unsigned char fileId[4] = { 0 }; fread(fileId, 1, 4, repFile); if ((fileId[0] == 'r') && (fileId[1] == 'E') && (fileId[2] == 'P') && (fileId[1] == ' ')) { fread(&eventCount, sizeof(int), 1, repFile); TRACELOG(LOG_WARNING, "Events loaded: %i\n", eventCount); fread(events, sizeof(AutomationEvent), eventCount, repFile); } fclose(repFile); */ // Load events file (text) FILE *repFile = fopen(fileName, "rt"); if (repFile != NULL) { unsigned int count = 0; char buffer[256] = { 0 }; fgets(buffer, 256, repFile); while (!feof(repFile)) { if (buffer[0] == 'c') sscanf(buffer, "c %i", &eventCount); else if (buffer[0] == 'e') { sscanf(buffer, "e %d %d %d %d %d", &events[count].frame, &events[count].type, &events[count].params[0], &events[count].params[1], &events[count].params[2]); count++; } fgets(buffer, 256, repFile); } if (count != eventCount) TRACELOG(LOG_WARNING, "Events count provided is different than count"); fclose(repFile); } TRACELOG(LOG_WARNING, "Events loaded: %i", eventCount); } // Export recorded events into a file static void ExportAutomationEvents(const char *fileName) { unsigned char fileId[4] = "rEP "; // Save as binary /* FILE *repFile = fopen(fileName, "wb"); fwrite(fileId, sizeof(unsigned char), 4, repFile); fwrite(&eventCount, sizeof(int), 1, repFile); fwrite(events, sizeof(AutomationEvent), eventCount, repFile); fclose(repFile); */ // Export events as text FILE *repFile = fopen(fileName, "wt"); if (repFile != NULL) { fprintf(repFile, "# Automation events list\n"); fprintf(repFile, "# c \n"); fprintf(repFile, "# e // \n"); fprintf(repFile, "c %i\n", eventCount); for (int i = 0; i < eventCount; i++) { fprintf(repFile, "e %i %i %i %i %i // %s\n", events[i].frame, events[i].type, events[i].params[0], events[i].params[1], events[i].params[2], autoEventTypeName[events[i].type]); } fclose(repFile); } } // EndDrawing() -> After PollInputEvents() // Check event in current frame and save into the events[i] array static void RecordAutomationEvent(unsigned int frame) { for (int key = 0; key < MAX_KEYBOARD_KEYS; key++) { // INPUT_KEY_UP (only saved once) if (CORE.Input.Keyboard.previousKeyState[key] && !CORE.Input.Keyboard.currentKeyState[key]) { events[eventCount].frame = frame; events[eventCount].type = INPUT_KEY_UP; events[eventCount].params[0] = key; events[eventCount].params[1] = 0; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_KEY_UP: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } // INPUT_KEY_DOWN if (CORE.Input.Keyboard.currentKeyState[key]) { events[eventCount].frame = frame; events[eventCount].type = INPUT_KEY_DOWN; events[eventCount].params[0] = key; events[eventCount].params[1] = 0; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_KEY_DOWN: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } } for (int button = 0; button < MAX_MOUSE_BUTTONS; button++) { // INPUT_MOUSE_BUTTON_UP if (CORE.Input.Mouse.previousButtonState[button] && !CORE.Input.Mouse.currentButtonState[button]) { events[eventCount].frame = frame; events[eventCount].type = INPUT_MOUSE_BUTTON_UP; events[eventCount].params[0] = button; events[eventCount].params[1] = 0; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_MOUSE_BUTTON_UP: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } // INPUT_MOUSE_BUTTON_DOWN if (CORE.Input.Mouse.currentButtonState[button]) { events[eventCount].frame = frame; events[eventCount].type = INPUT_MOUSE_BUTTON_DOWN; events[eventCount].params[0] = button; events[eventCount].params[1] = 0; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_MOUSE_BUTTON_DOWN: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } } // INPUT_MOUSE_POSITION (only saved if changed) if (((int)CORE.Input.Mouse.currentPosition.x != (int)CORE.Input.Mouse.previousPosition.x) || ((int)CORE.Input.Mouse.currentPosition.y != (int)CORE.Input.Mouse.previousPosition.y)) { events[eventCount].frame = frame; events[eventCount].type = INPUT_MOUSE_POSITION; events[eventCount].params[0] = (int)CORE.Input.Mouse.currentPosition.x; events[eventCount].params[1] = (int)CORE.Input.Mouse.currentPosition.y; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_MOUSE_POSITION: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } // INPUT_MOUSE_WHEEL_MOTION if (((int)CORE.Input.Mouse.currentWheelMove.x != (int)CORE.Input.Mouse.previousWheelMove.x) || ((int)CORE.Input.Mouse.currentWheelMove.y != (int)CORE.Input.Mouse.previousWheelMove.y)) { events[eventCount].frame = frame; events[eventCount].type = INPUT_MOUSE_WHEEL_MOTION; events[eventCount].params[0] = (int)CORE.Input.Mouse.currentWheelMove.x; events[eventCount].params[1] = (int)CORE.Input.Mouse.currentWheelMove.y;; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_MOUSE_WHEEL_MOTION: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } for (int id = 0; id < MAX_TOUCH_POINTS; id++) { // INPUT_TOUCH_UP if (CORE.Input.Touch.previousTouchState[id] && !CORE.Input.Touch.currentTouchState[id]) { events[eventCount].frame = frame; events[eventCount].type = INPUT_TOUCH_UP; events[eventCount].params[0] = id; events[eventCount].params[1] = 0; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_TOUCH_UP: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } // INPUT_TOUCH_DOWN if (CORE.Input.Touch.currentTouchState[id]) { events[eventCount].frame = frame; events[eventCount].type = INPUT_TOUCH_DOWN; events[eventCount].params[0] = id; events[eventCount].params[1] = 0; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_TOUCH_DOWN: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } // INPUT_TOUCH_POSITION // TODO: It requires the id! /* if (((int)CORE.Input.Touch.currentPosition[id].x != (int)CORE.Input.Touch.previousPosition[id].x) || ((int)CORE.Input.Touch.currentPosition[id].y != (int)CORE.Input.Touch.previousPosition[id].y)) { events[eventCount].frame = frame; events[eventCount].type = INPUT_TOUCH_POSITION; events[eventCount].params[0] = id; events[eventCount].params[1] = (int)CORE.Input.Touch.currentPosition[id].x; events[eventCount].params[2] = (int)CORE.Input.Touch.currentPosition[id].y; TRACELOG(LOG_INFO, "[%i] INPUT_TOUCH_POSITION: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } */ } for (int gamepad = 0; gamepad < MAX_GAMEPADS; gamepad++) { // INPUT_GAMEPAD_CONNECT /* if ((CORE.Input.Gamepad.currentState[gamepad] != CORE.Input.Gamepad.previousState[gamepad]) && (CORE.Input.Gamepad.currentState[gamepad] == true)) // Check if changed to ready { // TODO: Save gamepad connect event } */ // INPUT_GAMEPAD_DISCONNECT /* if ((CORE.Input.Gamepad.currentState[gamepad] != CORE.Input.Gamepad.previousState[gamepad]) && (CORE.Input.Gamepad.currentState[gamepad] == false)) // Check if changed to not-ready { // TODO: Save gamepad disconnect event } */ for (int button = 0; button < MAX_GAMEPAD_BUTTONS; button++) { // INPUT_GAMEPAD_BUTTON_UP if (CORE.Input.Gamepad.previousButtonState[gamepad][button] && !CORE.Input.Gamepad.currentButtonState[gamepad][button]) { events[eventCount].frame = frame; events[eventCount].type = INPUT_GAMEPAD_BUTTON_UP; events[eventCount].params[0] = gamepad; events[eventCount].params[1] = button; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_GAMEPAD_BUTTON_UP: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } // INPUT_GAMEPAD_BUTTON_DOWN if (CORE.Input.Gamepad.currentButtonState[gamepad][button]) { events[eventCount].frame = frame; events[eventCount].type = INPUT_GAMEPAD_BUTTON_DOWN; events[eventCount].params[0] = gamepad; events[eventCount].params[1] = button; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_GAMEPAD_BUTTON_DOWN: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } } for (int axis = 0; axis < MAX_GAMEPAD_AXIS; axis++) { // INPUT_GAMEPAD_AXIS_MOTION if (CORE.Input.Gamepad.axisState[gamepad][axis] > 0.1f) { events[eventCount].frame = frame; events[eventCount].type = INPUT_GAMEPAD_AXIS_MOTION; events[eventCount].params[0] = gamepad; events[eventCount].params[1] = axis; events[eventCount].params[2] = (int)(CORE.Input.Gamepad.axisState[gamepad][axis]*32768.0f); TRACELOG(LOG_INFO, "[%i] INPUT_GAMEPAD_AXIS_MOTION: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } } } // INPUT_GESTURE if (GESTURES.current != GESTURE_NONE) { events[eventCount].frame = frame; events[eventCount].type = INPUT_GESTURE; events[eventCount].params[0] = GESTURES.current; events[eventCount].params[1] = 0; events[eventCount].params[2] = 0; TRACELOG(LOG_INFO, "[%i] INPUT_GESTURE: %i, %i, %i", events[eventCount].frame, events[eventCount].params[0], events[eventCount].params[1], events[eventCount].params[2]); eventCount++; } } // Play automation event static void PlayAutomationEvent(unsigned int frame) { for (unsigned int i = 0; i < eventCount; i++) { if (events[i].frame == frame) { switch (events[i].type) { // Input events case INPUT_KEY_UP: CORE.Input.Keyboard.currentKeyState[events[i].params[0]] = false; break; // param[0]: key case INPUT_KEY_DOWN: CORE.Input.Keyboard.currentKeyState[events[i].params[0]] = true; break; // param[0]: key case INPUT_MOUSE_BUTTON_UP: CORE.Input.Mouse.currentButtonState[events[i].params[0]] = false; break; // param[0]: key case INPUT_MOUSE_BUTTON_DOWN: CORE.Input.Mouse.currentButtonState[events[i].params[0]] = true; break; // param[0]: key case INPUT_MOUSE_POSITION: // param[0]: x, param[1]: y { CORE.Input.Mouse.currentPosition.x = (float)events[i].params[0]; CORE.Input.Mouse.currentPosition.y = (float)events[i].params[1]; } break; case INPUT_MOUSE_WHEEL_MOTION: // param[0]: x delta, param[1]: y delta { CORE.Input.Mouse.currentWheelMove.x = (float)events[i].params[0]; break; CORE.Input.Mouse.currentWheelMove.y = (float)events[i].params[1]; break; } break; case INPUT_TOUCH_UP: CORE.Input.Touch.currentTouchState[events[i].params[0]] = false; break; // param[0]: id case INPUT_TOUCH_DOWN: CORE.Input.Touch.currentTouchState[events[i].params[0]] = true; break; // param[0]: id case INPUT_TOUCH_POSITION: // param[0]: id, param[1]: x, param[2]: y { CORE.Input.Touch.position[events[i].params[0]].x = (float)events[i].params[1]; CORE.Input.Touch.position[events[i].params[0]].y = (float)events[i].params[2]; } break; case INPUT_GAMEPAD_CONNECT: CORE.Input.Gamepad.ready[events[i].params[0]] = true; break; // param[0]: gamepad case INPUT_GAMEPAD_DISCONNECT: CORE.Input.Gamepad.ready[events[i].params[0]] = false; break; // param[0]: gamepad case INPUT_GAMEPAD_BUTTON_UP: CORE.Input.Gamepad.currentButtonState[events[i].params[0]][events[i].params[1]] = false; break; // param[0]: gamepad, param[1]: button case INPUT_GAMEPAD_BUTTON_DOWN: CORE.Input.Gamepad.currentButtonState[events[i].params[0]][events[i].params[1]] = true; break; // param[0]: gamepad, param[1]: button case INPUT_GAMEPAD_AXIS_MOTION: // param[0]: gamepad, param[1]: axis, param[2]: delta { CORE.Input.Gamepad.axisState[events[i].params[0]][events[i].params[1]] = ((float)events[i].params[2]/32768.0f); } break; case INPUT_GESTURE: GESTURES.current = events[i].params[0]; break; // param[0]: gesture (enum Gesture) -> rgestures.h: GESTURES.current // Window events case WINDOW_CLOSE: CORE.Window.shouldClose = true; break; case WINDOW_MAXIMIZE: MaximizeWindow(); break; case WINDOW_MINIMIZE: MinimizeWindow(); break; case WINDOW_RESIZE: SetWindowSize(events[i].params[0], events[i].params[1]); break; // Custom events case ACTION_TAKE_SCREENSHOT: { TakeScreenshot(TextFormat("screenshot%03i.png", screenshotCounter)); screenshotCounter++; } break; case ACTION_SETTARGETFPS: SetTargetFPS(events[i].params[0]); break; default: break; } } } } #endif #if !defined(SUPPORT_MODULE_RTEXT) // Formatting of text with variables to 'embed' // WARNING: String returned will expire after this function is called MAX_TEXTFORMAT_BUFFERS times const char *TextFormat(const char *text, ...) { #ifndef MAX_TEXTFORMAT_BUFFERS #define MAX_TEXTFORMAT_BUFFERS 4 // Maximum number of static buffers for text formatting #endif #ifndef MAX_TEXT_BUFFER_LENGTH #define MAX_TEXT_BUFFER_LENGTH 1024 // Maximum size of static text buffer #endif // We create an array of buffers so strings don't expire until MAX_TEXTFORMAT_BUFFERS invocations static char buffers[MAX_TEXTFORMAT_BUFFERS][MAX_TEXT_BUFFER_LENGTH] = { 0 }; static int index = 0; char *currentBuffer = buffers[index]; memset(currentBuffer, 0, MAX_TEXT_BUFFER_LENGTH); // Clear buffer before using va_list args; va_start(args, text); vsnprintf(currentBuffer, MAX_TEXT_BUFFER_LENGTH, text, args); va_end(args); index += 1; // Move to next buffer for next function call if (index >= MAX_TEXTFORMAT_BUFFERS) index = 0; return currentBuffer; } #endif // !SUPPORT_MODULE_RTEXT